7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of the ATP2C1 gene in Hailey–Hailey disease

      ,
      Cellular and Molecular Life Sciences
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Calcium pumps in health and disease.

          Ca2+-ATPases (pumps) are key actors in the regulation of Ca2+ in eukaryotic cells and are thus essential to the correct functioning of the cell machinery. They have high affinity for Ca2+ and can efficiently regulate it down to very low concentration levels. Two of the pumps have been known for decades (the SERCA and PMCA pumps); one (the SPCA pump) has only become known recently. Each pump is the product of a multigene family, the number of isoforms being further increased by alternative splicing of the primary transcripts. The three pumps share the basic features of the catalytic mechanism but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca2+. The molecular understanding of the function of the pumps has received great impetus from the solution of the three-dimensional structure of one of them, the SERCA pump. These spectacular advances in the structure and molecular mechanism of the pumps have been accompanied by the emergence and rapid expansion of the topic of pump malfunction, which has paralleled the rapid expansion of knowledge in the topic of Ca2+-signaling dysfunction. Most of the pump defects described so far are genetic: when they are very severe, they produce gross and global disturbances of Ca2+ homeostasis that are incompatible with cell life. However, pump defects may also be of a type that produce subtler, often tissue-specific disturbances that affect individual components of the Ca2+-controlling and/or processing machinery. They do not bring cells to immediate death but seriously compromise their normal functioning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease.

            Darier disease (DD) is an autosomal-dominant skin disorder characterized by loss of adhesion between epidermal cells (acantholysis) and abnormal keratinization. Recently we constructed a 2.4-Mb, P1-derived artificial chromosome contig spanning the DD candidate region on chromosome 12q23-24.1. After screening several genes that mapped to this region, we identified mutations in the ATP2A2 gene, which encodes the sarco/endoplasmic reticulum Ca2(+)-ATPase type 2 isoform (SERCA2) and is highly expressed in keratinocytes. Thirteen mutations were identified, including frameshift deletions, in-frame deletions or insertions, splice-site mutations and non-conservative missense mutations in functional domains. Our results demonstrate that mutations in ATP2A2 cause DD and disclose a role for this pump in a Ca(2+)-signalling pathway regulating cell-to-cell adhesion and differentiation of the epidermis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease.

              Hailey-Hailey disease (HHD, MIM 16960) is inherited in an autosomal dominant manner and characterized by persistent blisters and erosions of the skin. Impaired intercellular adhesion and epidermal blistering also occur in individuals with pemphigus (which is due to autoantibodies directed against desmosomal proteins) and in patients with Darier disease (DD, MIM 124200), which is caused by mutations in a gene encoding a sarco/endoplasmic reticulum (ER)-Golgi calcium pump. We report here the identification of mutations in ATP2C1, encoding the human homologue of an ATP-powered pump that sequesters calcium into the Golgi in yeast, in 21 HHD kindreds. Regulation of cytoplasmic calcium is impaired in cultured keratinocytes from HHD patients, and the normal epidermal calcium gradient is attenuated in vivo in HHD patients. Our findings not only provide an understanding of the molecular basis of HHD, but also underscore the importance of calcium control to the functioning of stratified squamous epithelia.
                Bookmark

                Author and article information

                Journal
                Cellular and Molecular Life Sciences
                Cell. Mol. Life Sci.
                Springer Nature
                1420-682X
                1420-9071
                October 2017
                May 27 2017
                October 2017
                : 74
                : 20
                : 3687-3696
                Article
                10.1007/s00018-017-2544-7
                28551824
                13181a04-566b-40c1-bdf8-1a8ae7bfe350
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article