1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hepatocellular Carcinoma-propagating Cells are Detectable by Side Population Analysis and Possess an Expression Profile Reflective of a Primitive Origin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent identification of “Side Population” (SP) cells in a number of unrelated human cancers has renewed interests in the hypothesis of cancer stem cells. Here we isolated SP cells from HepG2 cells and 18 of the 21 fresh hepatocellular carcinoma (HCC) tissue samples. These SP cells have higher abilities of forming spheroids, invasion and migration. Tumors could generate only from SP, not non-SP (NSP), cells in a low dose of subcutaneous injection to the NOD/SCID mice (5 × 10 2 cells/mouse). The mRNA microarray analysis of the SP vs. NSP cells isolated from HepG2 cells revealed that the SP cells express higher levels of pluripotency- and stem cell-associated transcription factors including Klf4, NF-Ya, SALL4 and HMGA2. Some of the known hepatobiliary progenitor/stem cell markers, such as Sox9 was also up-regulated. RT-qPCR analysis of the gene expression between SP cells and NSP cells isolated from both HepG2 cells and HCC tissue samples showed that most of the tested mRNAs’ changes were in consistent with the microarray data, including the general progenitor/stem cells markers such as Klf4, NF-Ya, SALL4 and HMGA2, which were up-regulated in SP cells. Our data indicates that HCC cancer stem cells exist in HepG2 and HCC fresh tissue samples and can be isolated by SP assay.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML.

          Leukemia stem cells (LSCs) are capable of limitless self-renewal and are responsible for the maintenance of leukemia. Because selective eradication of LSCs could offer substantial therapeutic benefit, there is interest in identifying the signaling pathways that control their development. We studied LSCs in mouse models of acute myelogenous leukemia (AML) induced either by coexpression of the Hoxa9 and Meis1a oncogenes or by the fusion oncoprotein MLL-AF9. We show that the Wnt/beta-catenin signaling pathway is required for self-renewal of LSCs that are derived from either hematopoietic stem cells (HSC) or more differentiated granulocyte-macrophage progenitors (GMP). Because the Wnt/beta-catenin pathway is normally active in HSCs but not in GMP, these results suggest that reactivation of beta-catenin signaling is required for the transformation of progenitor cells by certain oncogenes. beta-catenin is not absolutely required for self-renewal of adult HSCs; thus, targeting the Wnt/beta-catenin pathway may represent a new therapeutic opportunity in AML.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties.

            Recent advances in stem cell biology enable us to identify cancer stem cells in solid tumors as well as putative stem cells in normal solid organs. In this study, we applied side population (SP) cell analysis and sorting to established hepatocellular carcinoma (HCC) cell lines to detect subpopulations that function as cancer stem cells and to elucidate their roles in tumorigenesis. Among four cell lines analyzed, SP cells were detected in Huh7 (0.25%) and PLC/PRF/5 cells (0.80%), but not in HepG2 and Huh6 cells. SP cells demonstrated high proliferative potential and anti-apoptotic properties compared with those of non-SP cells. Immunocytochemistry examination showed that SP fractions contain a large number of cells presenting characteristics of both hepatocyte and cholangiocyte lineages. Non-obese diabetic/severe combined immunodeficiency (NOD/SCID) xenograft transplant experiments showed that only 1 x 10(3) SP cells were sufficient for tumor formation, whereas an injection of 1 x 10(6) non-SP cells did not initiate tumors. Re-analysis of SP cell-derived tumors showed that SP cells generated both SP and non-SP cells and tumor-initiating potential was maintained only in SP cells in serial transplantation. Microarray analysis discriminated a differential gene expression profile between SP and non-SP cells, and several so-called "stemness genes" were upregulated in SP cells in HCC cells. In conclusion, we propose that a minority population, detected as SP cells in HCC cells, possess extreme tumorigenic potential and provide heterogeneity to the cancer stem cell system characterized by distinct hierarchy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms.

              Similar to normal tissue, many tumors have a hierarchical organization where tumorigenic cancer stem cells (CSCs) differentiate into non-tumorigenic progenies. A host of studies have demonstrated that although CSCs and their non-tumorigenic progenies within the same clone can share common genotype, they display different epigenetic profiles that results in changes of multiple signaling pathways. Many of these pathways confer cell adaptation to the microenvironmental stresses including inflammation, hypoxia, low pH, shortage in nutrients and anti-cancer therapies. Treatment strategies based on combination of conventional therapies targeting bulk tumor cells and CSC-specific pathway inhibition bear a promise to improve cancer cure compared to monotherapies. In this review we describe the mechanisms of CSC-related therapy resistance including drug efflux by ABC transporters, activation of aldehyde dehydrogenase and developmental pathways, enhanced DNA damage response, autophagy and microenvironmental conditions, and discuss possible therapeutic strategies for improving cancer treatment.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                11 October 2016
                2016
                : 6
                : 34856
                Affiliations
                [1 ]Graduate School, Tianjin Medical University , No. 22, Qixiangtai Road, Tianjin 300070, China
                [2 ]Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Hospital , No. 17, Lujiang Road, Hefei 230001, China
                [3 ]CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China , No. 443, Huangshan Road, Hefei 230001, China
                [4 ]Central Laboratory of Medical research center, Anhui Provincial Hospital , No. 17, Lujiang Road, Hefei 230001, China
                [5 ]Department of Hepatic Surgery, Anhui Provincial Hospital , No. 17, Lujiang Road, Hefei 230001, China.
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep34856
                10.1038/srep34856
                5057076
                27725724
                1318b439-77e4-44d5-8a31-49f1a251e4c7
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 27 January 2016
                : 21 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article