1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fructose acutely stimulates NKCC2 activity in rat thick ascending limbs by increasing surface NKCC2 expression

      1 , 2 , 1 , 3
      American Journal of Physiology-Renal Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The thick ascending limb (TAL) reabsorbs 25% of the filtered NaCl through the Na + -K + -2Cl − cotransporter (NKCC2). NKCC2 activity is directly related to surface NKCC2 expression and phosphorylation. Higher NaCl reabsorption by TALs is linked to salt-sensitive hypertension, which is linked to consumption of fructose in the diet. However, little is known about the effects of fructose on renal NaCl reabsorption. We hypothesized that fructose, but not glucose, acutely enhances TAL-dependent NaCl reabsorption by increasing NKCC2 activity via stimulation of surface NKCC2 levels and phosphorylation at Thr 96/101 . We found that fructose (5 mM) increased transport-related O 2 consumption in TALs by 11.1 ± 3.2% ( P < 0.05). The effect of fructose on O 2 consumption was blocked by furosemide. To study the effect of fructose on NKCC2 activity, we measured the initial rate of NKCC2-dependent thallium influx. We found that 20 min of treatment with fructose (5 mM) increased NKCC2 activity by 58.5 ± 16.9% ( P < 0.05). We then used surface biotinylation to measure surface NKCC2 levels in rat TALs. Fructose increased surface NKCC2 expression in a concentration-dependent manner (22 ± 5,  49 ± 10, and 101 ± 59% of baseline with 1, 5, and 10 mM fructose, respectively, P < 0.05), whereas glucose or a glucose metabolite did not. Fructose did not change NKCC2 phosphorylation at Thre 96/101 or total NKCC2 expression. We concluded that acute fructose treatment increases NKCC2 activity by enhancing surface NKCC2 expression, rather than NKCC2 phosphorylation. Our data suggest that fructose consumption could contribute to salt-sensitive hypertension by stimulating NKCC2-dependent NaCl reabsorption in TALs.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          A causal role for uric acid in fructose-induced metabolic syndrome.

          The worldwide epidemic of metabolic syndrome correlates with an elevation in serum uric acid as well as a marked increase in total fructose intake (in the form of table sugar and high-fructose corn syrup). Fructose raises uric acid, and the latter inhibits nitric oxide bioavailability. Because insulin requires nitric oxide to stimulate glucose uptake, we hypothesized that fructose-induced hyperuricemia may have a pathogenic role in metabolic syndrome. Four sets of experiments were performed. First, pair-feeding studies showed that fructose, and not dextrose, induced features (hyperinsulinemia, hypertriglyceridemia, and hyperuricemia) of metabolic syndrome. Second, in rats receiving a high-fructose diet, the lowering of uric acid with either allopurinol (a xanthine oxidase inhibitor) or benzbromarone (a uricosuric agent) was able to prevent or reverse features of metabolic syndrome. In particular, the administration of allopurinol prophylactically prevented fructose-induced hyperinsulinemia (272.3 vs.160.8 pmol/l, P < 0.05), systolic hypertension (142 vs. 133 mmHg, P < 0.05), hypertriglyceridemia (233.7 vs. 65.4 mg/dl, P < 0.01), and weight gain (455 vs. 425 g, P < 0.05) at 8 wk. Neither allopurinol nor benzbromarone affected dietary intake of control diet in rats. Finally, uric acid dose dependently inhibited endothelial function as manifested by a reduced vasodilatory response of aortic artery rings to acetylcholine. These data provide the first evidence that uric acid may be a cause of metabolic syndrome, possibly due to its ability to inhibit endothelial function. Fructose may have a major role in the epidemic of metabolic syndrome and obesity due to its ability to raise uric acid.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters.

            Electroneutral cation-Cl(-) cotransporters compose a family of solute carriers in which cation (Na(+) or K(+)) movement through the plasma membrane is always accompanied by Cl(-) in a 1:1 stoichiometry. Seven well-characterized members include one gene encoding the thiazide-sensitive Na(+)-Cl(-) cotransporter, two genes encoding loop diuretic-sensitive Na(+)-K(+)-2Cl(-) cotransporters, and four genes encoding K(+)-Cl(-) cotransporters. These membrane proteins are involved in several physiological activities including transepithelial ion absorption and secretion, cell volume regulation, and setting intracellular Cl(-) concentration below or above its electrochemical potential equilibrium. In addition, members of this family play an important role in cardiovascular and neuronal pharmacology and pathophysiology. Some of these cotransporters serve as targets for loop diuretics and thiazide-type diuretics, which are among the most commonly prescribed drugs in the world, and inactivating mutations of three members of the family cause inherited diseases such as Bartter's, Gitelman's, and Anderman's diseases. Major advances have been made in the past decade as consequences of molecular identification of all members in this family. This work is a comprehensive review of the knowledge that has evolved in this area and includes molecular biology of each gene, functional properties of identified cotransporters, structure-function relationships, and physiological and pathophysiological roles of each cotransporter.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes?

              We propose that excessive fructose intake (>50 g/d) may be one of the underlying etiologies of metabolic syndrome and type 2 diabetes. The primary sources of fructose are sugar (sucrose) and high fructose corn syrup. First, fructose intake correlates closely with the rate of diabetes worldwide. Second, unlike other sugars, the ingestion of excessive fructose induces features of metabolic syndrome in both laboratory animals and humans. Third, fructose appears to mediate the metabolic syndrome in part by raising uric acid, and there are now extensive experimental and clinical data supporting uric acid in the pathogenesis of metabolic syndrome. Fourth, environmental and genetic considerations provide a potential explanation of why certain groups might be more susceptible to developing diabetes. Finally, we discuss the counterarguments associated with the hypothesis and a potential explanation for these findings. If diabetes might result from excessive intake of fructose, then simple public health measures could have a major impact on improving the overall health of our populace.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Renal Physiology
                American Journal of Physiology-Renal Physiology
                American Physiological Society
                1931-857X
                1522-1466
                March 2019
                March 2019
                : 316
                : 3
                : F550-F557
                Affiliations
                [1 ]Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
                [2 ]Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio
                [3 ]Department of Physiology, Wayne State University, Detroit, Michigan
                Article
                10.1152/ajprenal.00136.2018
                6459307
                30516424
                13214916-65b9-4631-866b-a9f327e44897
                © 2019
                History

                Comments

                Comment on this article