58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fast Evolution from Precast Bricks: Genomics of Young Freshwater Populations of Threespine Stickleback Gasterosteus aculeatus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback ( Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes from pre-existing genomic regions of adaptive variation, with strong selection that favors this assembly acting simultaneously at multiple loci.

          Author Summary

          Adaptation to novel environments is a keystone of evolution. There is only a handful of natural and experimental systems in which the process of adaptation has been studied in detail, and each studied system brings its own surprises with regard to the number of loci involved, dynamics of adaptation, extent of interactions between loci and of parallelism between different adapting populations. The threespine stickleback is an excellent model organism for evolutionary studies. Marine-derived freshwater populations of this species have consistently acquired a specific set of morphological, physiological and behavioral traits allowing them to reside in freshwater for their whole lifespan. Previous studies identified several genomic regions responsible for this adaptation. Here, using whole-genome sequencing, we compare the allele frequencies at such regions in four derived freshwater populations of known ages: two natural, and two artificially established in 1978. Knowledge of population ages allows us to infer the strength of selection that acted at these loci. Adaptation of threespine stickleback to freshwater is typically fast, and is driven by strong selection favoring pre-existing alleles that are likely present in the ancestral marine population at low frequencies; however, some of the adaptation may also be due to young population-specific alleles.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The genomic basis of adaptive evolution in threespine sticklebacks

          Summary Marine stickleback fish have colonized and adapted to innumerable streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of 20 additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results suggest that reuse of globally-shared standing genetic variation, including chromosomal inversions, plays an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, with regulatory changes likely predominating in this classic example of repeated adaptive evolution in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.

            Major phenotypic changes evolve in parallel in nature by molecular mechanisms that are largely unknown. Here, we use positional cloning methods to identify the major chromosome locus controlling armor plate patterning in wild threespine sticklebacks. Mapping, sequencing, and transgenic studies show that the Ectodysplasin (EDA) signaling pathway plays a key role in evolutionary change in natural populations and that parallel evolution of stickleback low-plated phenotypes at most freshwater locations around the world has occurred by repeated selection of Eda alleles derived from an ancestral low-plated haplotype that first appeared more than two million years ago. Members of this clade of low-plated alleles are present at low frequencies in marine fish, which suggests that standing genetic variation can provide a molecular basis for rapid, parallel evolution of dramatic phenotypic change in nature.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The hitch-hiking effect of a favourable gene.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2014
                9 October 2014
                : 10
                : 10
                : e1004696
                Affiliations
                [1 ]Department of Bioinformatics and Bioengineering, M. V. Lomonosov Moscow State University, Moscow, Russia
                [2 ]A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
                [3 ]Department of Genetics, Biological faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
                [4 ]White Sea Biological Station, Biological faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
                [5 ]Laboratory of Molecular genetics, Russian Institute of Fisheries and Oceanology, Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
                [6 ]Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
                [7 ]Department of Ecology and Evolutionary Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
                [8 ]N. K. Koltsov Institute of Developmental Biology RAS, Moscow, Russia
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NVT GAB ASK NSM. Performed the experiments: MDL AAP TVN AEB. Analyzed the data: NVT NSM. Contributed reagents/materials/analysis tools: MDL NSM. Wrote the paper: NVT MDL AAP TVN AEB GAB ASK NSM.

                Article
                PGENETICS-D-13-03042
                10.1371/journal.pgen.1004696
                4191950
                25299485
                132fbbe3-8742-4164-95be-76b30926cd2d
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 November 2013
                : 22 August 2014
                Page count
                Pages: 13
                Funding
                This work was supported by the Russian Ministry of Education and Science (grants 11.G34.31.0008 and 8814, http://eng.mon.gov.ru/) and by the Russian Foundation for Basic Research (grants 12-04-33202 mol_a_ved to GAB and 11-04-02056-a to NSM, http://www.rfbr.ru/rffi/eng/). GAB was partially supported by the Molecular and Cellular Biology Program of the Russian Academy of Sciences ( http://molbiol.edu.ru/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Computational Biology
                Genome Evolution
                Evolutionary Biology
                Evolutionary Processes
                Evolutionary Adaptation
                Genetic Drift
                Natural Selection
                Speciation
                Population Genetics
                Gene Flow
                Genetic Polymorphism
                Evolutionary Genetics
                Organismal Evolution
                Genetics
                Gene Identification and Analysis
                Genomics
                Molecular Genetics
                Mutation
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Genome Sequencing
                Sequence Analysis

                Genetics
                Genetics

                Comments

                Comment on this article