71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect and Mechanism of Transdermal Penetration Enhancement of Fu’s Cupping Therapy: New Physical Penetration Technology for Transdermal Administration with Traditional Chinese Medicine (TCM) Characteristics

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: In this paper, a new type of physical penetration technology for transdermal administration with traditional Chinese medicine (TCM) characteristics is presented. Fu’s cupping therapy (FCT), was established and studied using in vitro and in vivo experiments and the penetration effect and mechanism of FCT physical penetration technology was preliminarily discussed. Methods: With 1-(4-chlorobenzoyl)-5-methoxy-2-methylindole-3-ylacetic acid (indomethacin, IM) as a model drug, the establishment of high, medium, and low references was completed for the chemical permeation system via in vitro transdermal tests. Furthermore, using chemical penetration enhancers (CPEs) and iontophoresis as references, the percutaneous penetration effect of FCT for IM patches was evaluated using seven species of in vitro diffusion kinetics models and in vitro drug distribution; the IM quantitative analysis method in vivo was established using ultra-performance liquid chromatography-tandem mass spectrometry technology (UPLC-MS/MS), and pharmacokinetic parameters: area under the zero and first moment curves from 0 to last time t (AUC 0–t , AUMC 0–t ), area under the zero and first moment curves from 0 to infinity (AUC 0–∞ , AUMC 0–∞ ), maximum plasma concentration (C max) and mean residence time (MRT), were used as indicators to evaluate the percutaneous penetration effect of FCT in vivo. Additionally, we used the 3 K factorial design to study the joint synergistic penetration effect on FCT and chemical penetration enhancers. Through scanning electron microscopy (SEM) and transmission electron microscope (TEM) imaging, micro- and ultrastructural changes on the surface of the stratum corneum (SC) were observed to explore the FCT penetration mechanism. Results: In vitro and in vivo skin permeation experiments revealed that both the total cumulative percutaneous amount and in vivo percutaneous absorption amount of IM using FCT were greater than the amount using CPEs and iontophoresis. Firstly, compared with the control group, the indomethacin skin percutaneous rate of the FCT low-intensity group (FCTL) was 35.52%, and the enhancement ratio (ER) at 9 h was 1.76X, roughly equivalent to the penetration enhancing effect of the CPEs and iontophoresis. Secondly, the indomethacin percutaneous ratio of the FCT middle-intensity group (FCTM) and FCT high-intensity group (FCTH) were 47.36% and 54.58%, respectively, while the ERs at 9 h were 3.58X and 8.39X, respectively. Thirdly, pharmacokinetic data showed that in vivo indomethacin percutaneous absorption of the FCT was much higher than that of the control, that of the FCTM was slightly higher than that of the CPE, and that of the FCTM group was significantly higher than all others. Meanwhile, variance analysis indicated that the combination of the FCT penetration enhancement method and the CPE method had beneficial effects in enhancing skin penetration: the significance level of the CPE method was 0.0004, which was lower than 0.001, meaning the difference was markedly significant; the significance level of the FCT was also below 0.0001 and its difference markedly significant. The significance level of factor interaction A × B was lower than 0.0001, indicating that the difference in synergism was markedly significant. Moreover, SEM and TEM images showed that the SC surfaces of Sprague-Dawley rats treated with FCT were damaged, and it was difficult to observe the complete surface structure, with SC pores growing larger and its special “brick structure” becoming looser. This indicated that the barrier function of the skin was broken, thus revealing a potentially major route of skin penetration. Conclusion: FCT, as a new form of transdermal penetration technology, has significant penetration effects with TCM characteristics and is of high clinical value. It is worth promoting its development.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends.

          The use of ultrasound for the delivery of drugs to, or through, the skin is commonly known as sonophoresis or phonophoresis. The use of therapeutic and high frequencies of ultrasound (≥0.7MHz) for sonophoresis (HFS) dates back to as early as the 1950s, while low-frequency sonophoresis (LFS, 20-100kHz) has only been investigated significantly during the past two decades. Although HFS and LFS are similar because they both utilize ultrasound to increase the skin penetration of permeants, the mechanisms associated with each physical enhancer are different. Specifically, the location of cavitation and the extent to which each process can increase skin permeability are quite dissimilar. Although the applications of both technologies are different, they each have strengths that could allow them to improve current methods of local, regional, and systemic drug delivery. In this review, we will discuss the mechanisms associated with both HFS and LFS, specifically concentrating on the key mechanistic differences between these two skin treatment methods. Background on the relevant physics associated with ultrasound transmitted through aqueous media will also be discussed, along with implications of these phenomena on sonophoresis. Finally, a thorough review of the literature is included, dating back to the first published reports of sonophoresis, including a discussion of emerging trends in the field. Copyright © 2011 Elsevier B.V. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin.

            The transdsermal delivery of insulin remains a significant challenge due to low permeation rates at therapeutically useful rates. We report unilamellar nanovesicles with membrane thickness of 3-5 nm and entrapment efficiency of 89.05+/-0.91%, which can be driven by iontophoresis for enhancing transdermal delivery of insulin through microneedle-induced skin microchannels. The permeation rates of insulin from positive nanovesicles driven by iontophoresis through skins with microneedle-induced microchannels were 713.3 times higher than that of its passive diffusion. The in vivo studies show that the blood glucose levels of diabetic rats induced by the positive nanovesicles driven by iontophoresis through skins with microneedle-induced microchannels are 33.3% and 28.3% of the initial levels at 4 and 6 h, which are comparable to those induced by subcutaneous injection of insulin. The fluorescence imaging validated the penetration of insulin from the nanovesicles driven by iontophoresis through skins with microchannels. The nanovesicles with charges show significant permeation ability with the assistance of physical devices including microneedles and iontophoresis. This approach offers a new strategy for non-invasive delivery of peptides with large molecular weights using nanovesicles.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles

              Although sildenafil citrate (SC) is used extensively for erectile dysfunction, oral delivery of SC encounters many obstacles. Furthermore, the physicochemical characteristics of this amphoteric drug are challenging for delivery system formulation and transdermal permeation. This article concerns the assessment of the potential of nanomedicine for improving SC delivery and transdermal permeation. SC-loaded nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) were fabricated using a modified high-shear homogenization technique. Nanoparticle optimization steps included particle size analysis, entrapment efficiency (EE) determination, freeze-drying and reconstitution, differential scanning calorimetry, in vitro release, stability study and high-performance liquid chromatography analysis. Transdermal permeation of the nanocarriers compared with SC suspension across human skin was assessed using a modified Franz diffusion cell assembly. Results revealed that SLNs and NLCs could be optimized in the nanometric range (180 and 100 nm, respectively) with excellent EE (96.7% and 97.5%, respectively). Nanoparticles have significantly enhanced in vitro release and transdermal permeation of SC compared with its suspensions. Furthermore, transdermal permeation of SC exhibited higher initial release from both SLN and NLC formulations followed by controlled release, with promising implications for faster onset and longer drug duration. Nanomedicines prepared exhibited excellent physical stability for the study period. Solid nanoparticles optimized in this study successfully improved SC characteristics, paving the way for an efficient topical Viagra® product.

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                27 March 2017
                April 2017
                : 22
                : 4
                : 525
                Affiliations
                [1 ]School of Pharmacy, Guiyang College of Traditional Chinese Medicine, No. 50 Shi Dong Road, Guiyang 550002, China; xwjginseng@ 123456126.com (W.-J.X.); twt8489@ 123456126.com (J.X.); yff19771128@ 123456126.com (F.-F.Y.)
                [2 ]Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; ginseng123@ 123456163.com
                Author notes
                [* ]Correspondence: zgygpg@ 123456126.com
                Article
                molecules-22-00525
                10.3390/molecules22040525
                6154618
                28346390
                133a981e-b4e0-490d-b8e8-1b240238f3e1
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 December 2016
                : 22 March 2017
                Categories
                Article

                transdermal physical penetration technology,fu’s cupping therapy,pharmacokinetics,scanning electron microscopy (sem),transmission electron microscope (tem),stratum corneum,mechanism

                Comments

                Comment on this article

                Related Documents Log