12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pea, Pisum sativum, and Its Anticancer Activity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Plant lectins: potential antineoplastic drugs from bench to clinic.

          Plant lectins, carbohydrate-binding proteins distributed widely in a variety of plant species, have drawn a rising attention for cancer biologists due to their remarkable anti-tumour properties. In this review, we present a brief outline of the up-to-date advances of plant lectins in elucidating their complex anti-cancer mechanisms implicated in apoptosis and autophagy. In addition, we further discuss the pre-clinical and clinical studies of plant lectins for their potential therapeutic applications. In conclusion, these inspiring findings would open a new perspective for plant lectins as potential antineoplastic drugs from bench to clinic. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells.

            Triterpenoid B-group soyasaponins have been found to induce macroautophagy in human colon cancer cells at concentrations obtainable through consumption of legume foodstuffs. In the present studies the mechanism(s) for this autophagy-inducing action of soyasaponins was evaluated by measuring changes in signal transduction pathways associated with autophagy. Specifically, inhibition of the Akt signaling pathway and enhanced activity of ERK1/2 have previously been implicated in controlling induction of macroautophagy in mammalian cancer cells. Here we show that these pathways are also involved in B-group soyasaponin-induced macroautophagy, as changes in enzyme activities preceded significant increases in autophagic activity. The autophagic capacity of HCT-15 cells was significantly increased by 6 h post-saponin exposure, which led us to measure alterations in signaling events that preceded this time point. We determined that exposure to B-group soyasaponins suppressed Akt activity maximally by 50%, which was associated with a reduction in the activating phosphorylation of the Akt-serine473 residue. In addition, ERK1/2 activity was significantly increased by 60%, and was determined to be necessary for B-group soyasaponin-induced autophagy. The raf-1 kinase has been identified as a potential point of cross-talk between the Akt and ERK1/2 signaling cascades. Following B-group soyasaponin treatment activity of raf-1 was significantly increased by a maximal 200%, suggesting that this enzyme in part modulates the enhanced ERK1/2 activity. These results provide new insights into the signaling events that control induction of autophagy by B-group soyasaponins in human colon cancer cells and suggest that soyasaponins warrant further study as potential colon cancer chemopreventive agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dietary legume consumption reduces risk of colorectal cancer: evidence from a meta-analysis of cohort studies

              Previous epidemiological studies on the relation between dietary legume consumption and risk of colorectal cancer (CRC) remain controversial. We conducted a meta-analysis based on prospective cohort studies to investigate the association between dietary legume consumption and risk of CRC. Fourteen cohort studies were finally included, containing a total of 1903459 participants and 12261 cases who contributed 11628960 person-years. We found that higher legume consumption was associated with a decreased risk of CRC (RR, relative risk = 0.91; 95% CI, confidence interval = 0.84–0.98). Subgroup analyses suggested that higher legume consumption was inversely associated with CRC risk in Asian (RR = 0.82; 95% CI = 0.74–0.91) and soybean intake was associated with a decreased risk of CRC (RR = 0.85; 95% CI = 0.73–0.99). Findings from our meta-analysis supported an association between higher intake of legume and a reduced risk of CRC. Further studies controlled for appropriate confounders are warranted to validate the associations.
                Bookmark

                Author and article information

                Journal
                Pharmacogn Rev
                Pharmacogn Rev
                PRev
                Pharmacognosy Reviews
                Medknow Publications & Media Pvt Ltd (India )
                0973-7847
                0976-2787
                Jan-Jun 2017
                : 11
                : 21
                : 39-42
                Affiliations
                [1]Mahidol University International College, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand
                [1 ]Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
                Author notes
                Correspondence: Dr. Wannee Jiraungkoorskul, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand. E-mail: pathobiologymu@ 123456gmail.com
                Article
                PRev-11-39
                10.4103/phrev.phrev_57_16
                5414455
                28503053
                133ba1ae-4501-4639-b855-abc12e5fc224
                Copyright: © 2017 Pharmacognosy Reviews

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                History
                Categories
                Review Article

                Pharmacology & Pharmaceutical medicine
                anticancer,pea,pisum sativum,plant,traditional medicine
                Pharmacology & Pharmaceutical medicine
                anticancer, pea, pisum sativum, plant, traditional medicine

                Comments

                Comment on this article