Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Ushering in the next generation of precision trials for pediatric cancer

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Cancer treatment decisions are increasingly based on the genomic profile of the patient’s tumor, a strategy called “precision oncology.” Over the past few years, a growing number of clinical trials and case reports have provided evidence that precision oncology is an effective approach for at least some children with cancer. Here, we review key factors influencing pediatric drug development in the era of precision oncology. We describe an emerging regulatory framework that is accelerating the pace of clinical trials in children as well as design challenges that are specific to trials that involve young cancer patients. Last, we discuss new drug development approaches for pediatric cancers whose growth relies on proteins that are difficult to target therapeutically, such as transcription factors.

      Related collections

      Most cited references 46

      • Record: found
      • Abstract: found
      • Article: not found

      Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells.

      Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced interleukin-2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a previously unknown mechanism of action for a therapeutic agent: alteration of the activity of an E3 ubiquitin ligase, leading to selective degradation of specific targets.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Retinoic acid and arsenic trioxide for acute promyelocytic leukemia.

        All-trans retinoic acid (ATRA) with chemotherapy is the standard of care for acute promyelocytic leukemia (APL), resulting in cure rates exceeding 80%. Pilot studies of treatment with arsenic trioxide with or without ATRA have shown high efficacy and reduced hematologic toxicity. We conducted a phase 3, multicenter trial comparing ATRA plus chemotherapy with ATRA plus arsenic trioxide in patients with APL classified as low-to-intermediate risk (white-cell count, ≤10×10(9) per liter). Patients were randomly assigned to receive either ATRA plus arsenic trioxide for induction and consolidation therapy or standard ATRA-idarubicin induction therapy followed by three cycles of consolidation therapy with ATRA plus chemotherapy and maintenance therapy with low-dose chemotherapy and ATRA. The study was designed as a noninferiority trial to show that the difference between the rates of event-free survival at 2 years in the two groups was not greater than 5%. Complete remission was achieved in all 77 patients in the ATRA-arsenic trioxide group who could be evaluated (100%) and in 75 of 79 patients in the ATRA-chemotherapy group (95%) (P=0.12). The median follow-up was 34.4 months. Two-year event-free survival rates were 97% in the ATRA-arsenic trioxide group and 86% in the ATRA-chemotherapy group (95% confidence interval for the difference, 2 to 22 percentage points; P<0.001 for noninferiority and P=0.02 for superiority of ATRA-arsenic trioxide). Overall survival was also better with ATRA-arsenic trioxide (P=0.02). As compared with ATRA-chemotherapy, ATRA-arsenic trioxide was associated with less hematologic toxicity and fewer infections but with more hepatic toxicity. ATRA plus arsenic trioxide is at least not inferior and may be superior to ATRA plus chemotherapy in the treatment of patients with low-to-intermediate-risk APL. (Funded by Associazione Italiana contro le Leucemie and others; ClinicalTrials.gov number, NCT00482833.).
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins.

          Thalidomide-like drugs such as lenalidomide are clinically important treatments for multiple myeloma and show promise for other B cell malignancies. The biochemical mechanisms underlying their antitumor activity are unknown. Thalidomide was recently shown to bind to, and inhibit, the cereblon ubiquitin ligase. Cereblon loss in zebrafish causes fin defects reminiscent of the limb defects seen in children exposed to thalidomide in utero. Here we show that lenalidomide-bound cereblon acquires the ability to target for proteasomal degradation two specific B cell transcription factors, Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3). Analysis of myeloma cell lines revealed that loss of IKZF1 and IKZF3 is both necessary and sufficient for lenalidomide's therapeutic effect, suggesting that the antitumor and teratogenic activities of thalidomide-like drugs are dissociable.
            Bookmark

            Author and article information

            Journal
            Science
            Science
            American Association for the Advancement of Science (AAAS)
            0036-8075
            1095-9203
            March 14 2019
            March 15 2019
            March 14 2019
            March 15 2019
            : 363
            : 6432
            : 1175-1181
            10.1126/science.aaw4153
            © 2019

            http://www.sciencemag.org/about/science-licenses-journal-article-reuse

            Comments

            Comment on this article