The cyto- and myeloarchitectonic organization of trigeminal nucleus interpolaris (Vi) was examined in the rat using correlated Nissl- and myelin-stained sections. The caudal boundary of Vi is marked by a spatial overlap with the rostral pole of the medullary dorsal horn (MDH), where there is a dorsal and medial displacement of the substantia gelatinosa (SG, lamina II) layer of MDH. This spatial displacement was further documented using cytochrome-oxidase-reacted sections through the periobex region (POR) of the medulla, where the relatively unstained SG contrasts sharply with the intensely stained Vi neuropil. The rostral boundary of Vi is characterized partly by a distinct overlap with the caudal pole of the dorsomedial region (DM) of trigeminal nucleus oralis (Vo), and partly by a more gradual transition with ventral and lateral regions of Vo. The presence of the distinct MDH-Vi overlap is discussed in terms of its impact on the widespread contention that Vi is involved in the processing of dental pain afferents in the POR. Six separate and distinct regions of rat Vi can be distinguished on the basis of differences in their overall cyto- and myeloarchitecture: (1) a ventrolateral parvocellular region (vlVipc), which occupies the ventrolateral caudal half of Vi; (2) a ventrolateral magnocellular region (vlVimc), which occupies a similar region in the rostral half of the nucleus; (3) a border region (brVi), interposed between the spinal trigeminal tract (SVT) and vlVipc and vlVimc; (4) a dorsolateral region (dlVi), which lies predominantly in the rostral two-thirds of Vi subjacent to the dorsal half of SVT; (5) a dorsal cap region (dcVi), occupying the dorsomedial aspect of the nucleus throughout its entire rostrocaudal extent; and (6) an intermediate region (irVi), which lies immediately ventral to dcVi within the concavity formed by the medial borders of vlVipc and vlVimc. It is proposed that these cyto- and myeloarchitecturally distinct regions of Vi may largely represent functionally distinct regions, based on reported differences in the organization of afferent and efferent projections within the nucleus.