7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of Regional Perfusion and Organ Function: Less and Non-invasive Techniques

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sufficient organ perfusion essentially depends on preserved macro- and micro-circulation. The last two decades brought substantial progress in the development of less and non-invasive monitoring of macro-hemodynamics. However, several recent studies suggest a frequent incoherence of macro- and micro-circulation. Therefore, this review reports on interactions of macro- and micro-circulation as well as on specific regional and micro-circulation. Regarding global micro-circulation the last two decades brought advances in a more systematic approach of clinical examination including capillary refill time, a graded assessment of mottling of the skin and accurate measurement of body surface temperatures. As a kind of link between macro- and microcirculation, a number of biochemical markers can easily be obtained. Among those are central-venous oxygen saturation (S cvO 2), plasma lactate and the difference between central-venous and arterial CO 2 (cv-a-pCO 2-gap). These inexpensive markers have become part of clinical routine and guideline recommendations. While their potential to replace parameters of macro-circulation such as cardiac output (CO) is limited, they facilitate the interpretation of the adequacy of CO and other macro-circulatory markers. Furthermore, they give additional hints on micro-circulatory impairment. In addition, a number of more sophisticated technical approaches to quantify and visualize micro-circulation including video-microscopy, laser flowmetry, near-infrared spectroscopy (NIRS), and partial oxygen pressure measurement have been introduced within the last 20 years. These technologies have been extensively used for scientific purposes. Moreover, they have been successfully used for educational purposes and to visualize micro-circulatory disturbances during sepsis and other causes of shock. Despite several studies demonstrating the association of these techniques and parameters with outcome, their practical application still is limited. However, future improvements in automated and “online” diagnosis will help to make these technologies more applicable in clinical routine. This approach is promising with regard to several studies which demonstrated the potential to guide therapy in different types of shock. Finally several organs have specific patterns of circulation related to their special anatomy (liver) or their auto-regulatory capacities (brain, kidney). Therefore, this review also discusses specific issues of monitoring liver, brain, and kidney circulation and function.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Acute kidney injury in sepsis.

          Acute kidney injury (AKI) and sepsis carry consensus definitions. The simultaneous presence of both identifies septic AKI. Septic AKI is the most common AKI syndrome in ICU and accounts for approximately half of all such AKI. Its pathophysiology remains poorly understood, but animal models and lack of histological changes suggest that, at least initially, septic AKI may be a functional phenomenon with combined microvascular shunting and tubular cell stress. The diagnosis remains based on clinical assessment and measurement of urinary output and serum creatinine. However, multiple biomarkers and especially cell cycle arrest biomarkers are gaining acceptance. Prevention of septic AKI remains based on the treatment of sepsis and on early resuscitation. Such resuscitation relies on the judicious use of both fluids and vasoactive drugs. In particular, there is strong evidence that starch-containing fluids are nephrotoxic and decrease renal function and suggestive evidence that chloride-rich fluid may also adversely affect renal function. Vasoactive drugs have variable effects on renal function in septic AKI. At this time, norepinephrine is the dominant agent, but vasopressin may also have a role. Despite supportive therapies, renal function may be temporarily or completely lost. In such patients, renal replacement therapy (RRT) becomes necessary. The optimal intensity of this therapy has been established, while the timing of when to commence RRT is now a focus of investigation. If sepsis resolves, the majority of patients recover renal function. Yet, even a single episode of septic AKI is associated with increased subsequent risk of chronic kidney disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial.

            It is unknown whether lactate monitoring aimed to decrease levels during initial treatment in critically ill patients improves outcome. To assess the effect of lactate monitoring and resuscitation directed at decreasing lactate levels in intensive care unit (ICU) patients admitted with a lactate level of greater than or equal to 3.0 mEq/L. Patients were randomly allocated to two groups. In the lactate group, treatment was guided by lactate levels with the objective to decrease lactate by 20% or more per 2 hours for the initial 8 hours of ICU stay. In the control group, the treatment team had no knowledge of lactate levels (except for the admission value) during this period. The primary outcome measure was hospital mortality. The lactate group received more fluids and vasodilators. However, there were no significant differences in lactate levels between the groups. In the intention-to-treat population (348 patients), hospital mortality in the control group was 43.5% (77/177) compared with 33.9% (58/171) in the lactate group (P = 0.067). When adjusted for predefined risk factors, hospital mortality was lower in the lactate group (hazard ratio, 0.61; 95% confidence interval, 0.43-0.87; P = 0.006). In the lactate group, Sequential Organ Failure Assessment scores were lower between 9 and 72 hours, inotropes could be stopped earlier, and patients could be weaned from mechanical ventilation and discharged from the ICU earlier. In patients with hyperlactatemia on ICU admission, lactate-guided therapy significantly reduced hospital mortality when adjusting for predefined risk factors. As this was consistent with important secondary endpoints, this study suggests that initial lactate monitoring has clinical benefit. Clinical trial registered with www.clinicaltrials.gov (NCT00270673).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial.

              Goal-directed resuscitation for severe sepsis and septic shock has been reported to reduce mortality when applied in the emergency department. To test the hypothesis of noninferiority between lactate clearance and central venous oxygen saturation (ScvO2) as goals of early sepsis resuscitation. Multicenter randomized, noninferiority trial involving patients with severe sepsis and evidence of hypoperfusion or septic shock who were admitted to the emergency department from January 2007 to January 2009 at 1 of 3 participating US urban hospitals. We randomly assigned patients to 1 of 2 resuscitation protocols. The ScvO2 group was resuscitated to normalize central venous pressure, mean arterial pressure, and ScvO2 of at least 70%; and the lactate clearance group was resuscitated to normalize central venous pressure, mean arterial pressure, and lactate clearance of at least 10%. The study protocol was continued until all goals were achieved or for up to 6 hours. Clinicians who subsequently assumed the care of the patients were blinded to the treatment assignment. The primary outcome was absolute in-hospital mortality rate; the noninferiority threshold was set at Delta equal to -10%. Of the 300 patients enrolled, 150 were assigned to each group and patients were well matched by demographic, comorbidities, and physiological features. There were no differences in treatments administered during the initial 72 hours of hospitalization. Thirty-four patients (23%) in the ScvO2 group died while in the hospital (95% confidence interval [CI], 17%-30%) compared with 25 (17%; 95% CI, 11%-24%) in the lactate clearance group. This observed difference between mortality rates did not reach the predefined -10% threshold (intent-to-treat analysis: 95% CI for the 6% difference, -3% to 15%). There were no differences in treatment-related adverse events between the groups. Among patients with septic shock who were treated to normalize central venous and mean arterial pressure, additional management to normalize lactate clearance compared with management to normalize ScvO2 did not result in significantly different in-hospital mortality. clinicaltrials.gov Identifier: NCT00372502.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                22 March 2019
                2019
                : 6
                : 50
                Affiliations
                [1] 1Medizinische Klinik und Poliklinik II, Klinikum rechts der Isar, Technische Universität München , München, Germany
                [2] 2Klinik für Anästhesiologie, Klinikum rechts der Isar, Technische Universität München , München, Germany
                Author notes

                Edited by: Samir G. Sakka, Universität Witten/Herdecke, Germany

                Reviewed by: Inge Bauer, Universitätsklinikum Düsseldorf, Germany; Alexander Koch, Uniklinik RWTH Aachen, Germany

                *Correspondence: Wolfgang Huber Wolfgang.Huber@ 123456tum.de

                This article was submitted to Intensive Care Medicine and Anesthesiology, a section of the journal Frontiers in Medicine

                Article
                10.3389/fmed.2019.00050
                6438879
                30968023
                135e5c16-fad6-40b5-9e9d-c771ed7bdb9f
                Copyright © 2019 Huber, Zanner, Schneider, Schmid and Lahmer.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 March 2018
                : 25 February 2019
                Page count
                Figures: 0, Tables: 10, Equations: 2, References: 117, Pages: 15, Words: 11837
                Categories
                Medicine
                Review

                liver function,neuromonitoring,capillary refill time,body surface temperature,near infra-red spectroscopy,hemodynamic monitoring,renal failure,mottling score

                Comments

                Comment on this article