14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Hyperoxia on Retinoid Metabolism and Retinoid Receptor Expression in the Lungs of Newborn Mice

      research-article
      1 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Preterm newborns that receive oxygen therapy often develop bronchopulmonary dysplasia (BPD), which is abnormal lung development characterized by impaired alveologenesis. Oxygen-mediated injury is thought to disrupt normal lung growth and development. However, the mechanism of hyperoxia-induced BPD has not been extensively investigated. We established a neonatal mouse model to investigate the effects of normobaric hyperoxia on retinoid metabolism and retinoid receptor expression.

          Methods

          Newborn mice were exposed to hyperoxic or normoxic conditions for 15 days. The concentration of retinol and retinyl palmitate in the lung was measured by HPLC to gauge retinoid metabolism. Retinoid receptor mRNA levels were assessed by real-time PCR. Proliferation and retinoid receptor expression in A549 cells were assessed in the presence and absence of exogenous vitamin A.

          Results

          Hyperoxia significantly reduced the body and lung weight of neonatal mice. Hyperoxia also downregulated expression of RARα, RARγ, and RXRγ in the lungs of neonatal mice. In vitro, hyperoxia inhibited proliferation and expression of retinoid receptors in A549 cells.

          Conclusion

          Hyperoxia disrupted retinoid receptor expression in neonatal mice.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          A decade of molecular biology of retinoic acid receptors.

          P Chambon (1996)
          Retinoids play an important role in development, differentiation, and homeostasis. The discovery of retinoid receptors belonging to the superfamily of nuclear ligand-activated transcriptional regulators has revolutionized our molecular understanding as to how these structurally simple molecules exert their pleiotropic effects. Diversity in the control of gene expression by retinoid signals is generated through complexity at different levels of the signaling pathway. A major source of diversity originates from the existence of two families of retinoid acid (RA) receptors (R), the RAR isotypes (alpha, beta, and gamma) and the three RXR isotypes (alpha, beta, and gamma), and their numerous isoforms, which bind as RXR/RAR heterodimers to the polymorphic cis-acting response elements of RA target genes. The possibility of cross-modulation (cross-talk) with cell-surface receptors signaling pathways, as well as the finding that RARs and RXRs interact with multiple putative coactivators and/or corepressors, generates additional levels of complexity for the array of combinatorial effects that underlie the pleiotropic effects of retinoids. This review focuses on recent developments, particularly in the area of structure-function relationships.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nuclear retinoid receptors and the transcription of retinoid-target genes.

            The pleiotropic effects of retinoids are mediated by nuclear retinoid receptors (RARs and RXRs) which are ligand-activated transcription factors. In response to retinoid binding, RAR/RXR heterodimers undergo major conformational changes and orchestrate the transcription of specific gene networks, through binding to specific DNA response elements and recruiting cofactor complexes that act to modify local chromatin structure and/or engage the basal transcription machinery. Then the degradation of RARs and RXRs by the ubiquitin-proteasome controls the magnitude and the duration of the retinoid response. RARs and RXRs also integrate a variety of signaling pathways through phosphorylation events which cooperate with the ligand for the control of retinoid-target genes transcription. These different modes of regulation reveal unexpected levels of complexity in the dynamics of retinoid-dependent transcription.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants.

              Compound null mutations of retinoic acid receptor (RAR) genes lead to lethality in utero or shortly after birth and to numerous developmental abnormalities. In the accompanying paper (Lohnes, D., Mark., M., Mendelsohn, C., Dollé, P., Dierich, A., Gorry, Ph., Gansmuller, A. and Chambon, P. (1994). Development 120, 2723-2748), we describe malformations of the head, vertebrae and limbs which, with the notable exception of the eye defects, were not observed in the offspring of vitamin A-deficient (VAD) dams. We report here abnormalities in the neck, trunk and abdominal regions of RAR double mutant mice, which include: (i) the entire respiratory tract, (ii) the heart, its outlow tract and the great vessels located near the heart, (iii) the thymus, thyroid and parathyroid glands, (iv) the diaphragm, (v) the genito-urinary system, and (vi) the lower digestive tract. A majority of these abnormalities recapitulate those observed in the fetal VAD syndrome described by Joseph Warkany's group more than fourty years ago [Wilson, J. G., Roth, C. B. and Warkany, J. (1953) Am. J. Anat., 92, 189-217; and refs therein]. Our results clearly demonstrate that RARs are essential for vertebrate ontogenesis and therefore that retinoic acid is the active retinoid, which is required at several stages of the development of numerous tissues and organs. We discuss several possibilities that may account for the apparent functional redundancy observed amongst retinoic acid receptors during embryogenesis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                28 October 2015
                2015
                : 10
                : 10
                : e0140343
                Affiliations
                [1 ]Graduate Institute of Clinical Medicine College of Medicine of National Taiwan University, Taipei, Taiwan
                [2 ]Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan
                Medical University of South Carolina, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HJC BLC. Performed the experiments: HJC. Analyzed the data: HJC. Contributed reagents/materials/analysis tools: HJC BLC. Wrote the paper: HJC. Provided suggestions and solutions when there were problems during the experiment: BLC.

                Article
                PONE-D-14-41047
                10.1371/journal.pone.0140343
                4624932
                26509921
                13644c83-a5e7-40e9-ac70-f4952b605ca7
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 12 September 2014
                : 24 September 2015
                Page count
                Figures: 6, Tables: 0, Pages: 14
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article