36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of a Novel PQQ-Dependent Quinohemoprotein Pyranose Dehydrogenase from Coprinopsis cinerea Classified into Auxiliary Activities Family 12 in Carbohydrate-Active Enzymes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The basidiomycete Coprinopsis cinerea contains a quinohemoprotein ( CcPDH named as CcSDH in our previous paper), which is a new type of pyrroloquinoline-quinone (PQQ)-dependent pyranose dehydrogenase and is the first found among all eukaryotes. This enzyme has a three-domain structure consisting of an N-terminal heme b containing a cytochrome domain that is homologous to the cytochrome domain of cellobiose dehydrogenase (CDH; EC 1.1.99.18) from the wood-rotting basidiomycete Phanerochaete chrysosporium, a C-terminal family 1-type carbohydrate-binding module, and a novel central catalytic domain containing PQQ as a cofactor. Here, we describe the biochemical and electrochemical characterization of recombinant CcPDH. UV-vis and resonance Raman spectroscopic studies clearly reveal characteristics of a 6-coordinated low-spin heme b in both the ferric and ferrous states, as well as intramolecular electron transfer from the PQQ to heme b. Moreover, the formal potential of the heme was evaluated to be 130 mV vs. NHE by cyclic voltammetry. These results indicate that the cytochrome domain of CcPDH possesses similar biophysical properties to that in CDH. A comparison of the conformations of monosaccharides as substrates and the associated catalytic efficiency ( k cat/ K m) of CcPDH indicates that the enzyme prefers monosaccharides with equatorial C-2, C-3 hydroxyl groups and an axial C-4 hydroxyl group in the 1C 4 chair conformation. Furthermore, a binding study shows a high binding affinity of CcPDH for cellulose, suggesting that CcPDH function is related to the enzymatic degradation of plant cell wall.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes

          Background Since its inception, the carbohydrate-active enzymes database (CAZy; http://www.cazy.org) has described the families of enzymes that cleave or build complex carbohydrates, namely the glycoside hydrolases (GH), the polysaccharide lyases (PL), the carbohydrate esterases (CE), the glycosyltransferases (GT) and their appended non-catalytic carbohydrate-binding modules (CBM). The recent discovery that members of families CBM33 and family GH61 are in fact lytic polysaccharide monooxygenases (LPMO), demands a reclassification of these families into a suitable category. Results Because lignin is invariably found together with polysaccharides in the plant cell wall and because lignin fragments are likely to act in concert with (LPMO), we have decided to join the families of lignin degradation enzymes to the LPMO families and launch a new CAZy class that we name “Auxiliary Activities” in order to accommodate a range of enzyme mechanisms and substrates related to lignocellulose conversion. Comparative analyses of these auxiliary activities in 41 fungal genomes reveal a pertinent division of several fungal groups and subgroups combining their phylogenetic origin and their nutritional mode (white vs. brown rot). Conclusions The new class introduced in the CAZy database extends the traditional CAZy families, and provides a better coverage of the full extent of the lignocellulose breakdown machinery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa.

            The high cost of enzymes for saccharification of lignocellulosic biomass is a major barrier to the production of second generation biofuels. Using a combination of genetic and biochemical techniques, we report that filamentous fungi use oxidative enzymes to cleave glycosidic bonds in cellulose. Deletion of cdh-1, the gene encoding the major cellobiose dehydrogenase of Neurospora crassa, reduced cellulase activity substantially, and addition of purified cellobiose dehydrogenases from M. thermophila to the Δcdh-1 strain resulted in a 1.6- to 2.0-fold stimulation in cellulase activity. Addition of cellobiose dehydrogenase to a mixture of purified cellulases showed no stimulatory effect. We show that cellobiose dehydrogenase enhances cellulose degradation by coupling the oxidation of cellobiose to the reductive activation of copper-dependent polysaccharide monooxygenases (PMOs) that catalyze the insertion of oxygen into C-H bonds adjacent to the glycosidic linkage. Three of these PMOs were characterized and shown to have different regiospecifities resulting in oxidized products modified at either the reducing or nonreducing end of a glucan chain. In contrast to previous models where oxidative enzymes were thought to produce reactive oxygen species that randomly attacked the substrate, the data here support a direct, enzyme-catalyzed oxidation of cellulose. Cellobiose dehydrogenases and proteins related to the polysaccharide monooxygenases described here are found throughout both ascomycete and basidiomycete fungi, suggesting that this model for oxidative cellulose degradation may be widespread throughout the fungal kingdom. When added to mixtures of cellulases, these proteins enhance cellulose saccharification, suggesting that they could be used to reduce the cost of biofuel production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61.

              Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                13 February 2015
                2015
                : 10
                : 2
                : e0115722
                Affiliations
                [1 ]Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
                [2 ]Department of Biomaterials Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
                [3 ]Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
                INRA, FRANCE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MS HO MY KI NN. Performed the experiments: KT HM TI. Analyzed the data: KT HM TI MY KI NN. Contributed reagents/materials/analysis tools: KT HM TI MY KI NN. Wrote the paper: KT HM TI MY KI NN.

                [¤]

                Current address: Institute of Environmental Health, Oregon Health and Science University, Portland, Oregon, United States of America

                ‡ These authors contributed equally to this work.

                Article
                PONE-D-14-46694
                10.1371/journal.pone.0115722
                4332668
                25679509
                136eca64-f843-4932-9a41-294bf2fb4c21
                Copyright @ 1969

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 17 October 2014
                : 1 December 2014
                Page count
                Figures: 8, Tables: 3, Pages: 16
                Funding
                This work was supported financially by a Grant-in-Aid for Scientific Research (No. 21605004 to N.N.) from the Japan Society for the Promotion of Science (JSPS), by a Grant-in-Aid for Innovative Areas (No. 24114001 and 24114008 to K.I.) from the Japanese Ministry of Education, Culture, Sports, and Technology (MEXT), and by a Grant-in-Aid for JSPS Fellows (Grant No. 268641 to K.T.). H.M. was supported by a Grant-in-Aid for JSPS Fellows (Grant No. 208304) during his postdoc period at the University of Tokyo. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article