Blog
About

29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A gene network regulating lysosomal biogenesis and function.

      Science (New York, N.Y.)

      Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, metabolism, Transcription Factors, Sucrose, Promoter Regions, Genetic, Mice, physiology, genetics, Lysosomes, Inverted Repeat Sequences, Humans, HeLa Cells, Gene Regulatory Networks, Consensus Sequence, Chromatin Immunoprecipitation, Cells, Cultured, Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lysosomes are organelles central to degradation and recycling processes in animal cells. Whether lysosomal activity is coordinated to respond to cellular needs remains unclear. We found that most lysosomal genes exhibit coordinated transcriptional behavior and are regulated by the transcription factor EB (TFEB). Under aberrant lysosomal storage conditions, TFEB translocated from the cytoplasm to the nucleus, resulting in the activation of its target genes. TFEB overexpression in cultured cells induced lysosomal biogenesis and increased the degradation of complex molecules, such as glycosaminoglycans and the pathogenic protein that causes Huntington's disease. Thus, a genetic program controls lysosomal biogenesis and function, providing a potential therapeutic target to enhance cellular clearing in lysosomal storage disorders and neurodegenerative diseases.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.

          The multiprotein mTORC1 protein kinase complex is the central component of a pathway that promotes growth in response to insulin, energy levels, and amino acids and is deregulated in common cancers. We find that the Rag proteins--a family of four related small guanosine triphosphatases (GTPases)--interact with mTORC1 in an amino acid-sensitive manner and are necessary for the activation of the mTORC1 pathway by amino acids. A Rag mutant that is constitutively bound to guanosine triphosphate interacted strongly with mTORC1, and its expression within cells made the mTORC1 pathway resistant to amino acid deprivation. Conversely, expression of a guanosine diphosphate-bound Rag mutant prevented stimulation of mTORC1 by amino acids. The Rag proteins do not directly stimulate the kinase activity of mTORC1, but, like amino acids, promote the intracellular localization of mTOR to a compartment that also contains its activator Rheb.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments

            g:Profiler (http://biit.cs.ut.ee/gprofiler/) is a public web server for characterising and manipulating gene lists resulting from mining high-throughput genomic data. g:Profiler has a simple, user-friendly web interface with powerful visualisation for capturing Gene Ontology (GO), pathway, or transcription factor binding site enrichments down to individual gene levels. Besides standard multiple testing corrections, a new improved method for estimating the true effect of multiple testing over complex structures like GO has been introduced. Interpreting ranked gene lists is supported from the same interface with very efficient algorithms. Such ordered lists may arise when studying the most significantly affected genes from high-throughput data or genes co-expressed with the query gene. Other important aspects of practical data analysis are supported by modules tightly integrated with g:Profiler. These are: g:Convert for converting between different database identifiers; g:Orth for finding orthologous genes from other species; and g:Sorter for searching a large body of public gene expression data for co-expression. g:Profiler supports 31 different species, and underlying data is updated regularly from sources like the Ensembl database. Bioinformatics communities wishing to integrate with g:Profiler can use alternative simple textual outputs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking.

              Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the class C Vps complex, a key component of the endosomal fusion machinery. This interaction stimulates Rab7 GTPase activity and autophagosome fusion with late endosomes/lysosomes, thereby enhancing delivery and degradation of autophagic cargo. Furthermore, the UVRAG-class-C-Vps complex accelerates endosome-endosome fusion, resulting in rapid degradation of endocytic cargo. Remarkably, autophagosome/endosome maturation mediated by the UVRAG-class-C-Vps complex is genetically separable from UVRAG-Beclin1-mediated autophagosome formation. This result indicates that UVRAG functions as a multivalent trafficking effector that regulates not only two important steps of autophagy - autophagosome formation and maturation - but also endosomal fusion, which concomitantly promotes transport of autophagic and endocytic cargo to the degradative compartments.
                Bookmark

                Author and article information

                Journal
                10.1126/science.1174447
                19556463

                Comments

                Comment on this article