14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of Endocan tumorigenic properties after alternative splicing of exon 2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Endocan was originally described as a dermatan sulfate proteoglycan found freely circulating in the blood. Endocan expression confers tumorigenic properties to epithelial cell lines or accelerate the growth of already tumorigenic cells. This molecule is the product of a single gene composed of 3 exons. Previous data showed that endocan mRNA is subject to alternative splicing with possible generation of two protein products. In the present study we identified, and functionally characterized, the alternative spliced product of the endocan gene: the exon 2-deleted endocan, called endocanΔ2.

          Methods

          Stable, endocanΔ2-overexpressing cell lines were generated to investigate the biological activities of this new alternatively spliced product of endocan gene. Tumorigenesis was studied by inoculating endocan and endocanΔ2 expressing cell lines subcutaneously in SCID mice. Biochemical properties of endocan and endocanΔ2 were studied after production of recombinant proteins in various cell lines of human and murine origin.

          Results

          Our results showed that the exon 2 deletion impairs synthesis of the glycan chain, known to be involved in the pro-tumoral effect of endocan. EndocanΔ2 did not promote tumor formation by 293 cells implanted in the skin of severe combined immunodeficient (SCID) mice.

          Conclusion

          Our results emphasize the key role of the polypeptide sequence encoded by the exon 2 of endocan gene in tumorigenesis, and suggest that this sequence could be a target for future therapies against cancer.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2006.

          Each year, the American Cancer Society estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute and mortality data from the National Center for Health Statistics. Incidence and death rates are age-standardized to the 2000 US standard million population. A total of 1,399,790 new cancer cases and 564,830 deaths from cancer are expected in the United States in 2006. When deaths are aggregated by age, cancer has surpassed heart disease as the leading cause of death for those younger than age 85 since 1999. Delay-adjusted cancer incidence rates stabilized in men from 1995 through 2002, but continued to increase by 0.3% per year from 1987 through 2002 in women. Between 2002 and 2003, the actual number of recorded cancer deaths decreased by 778 in men, but increased by 409 in women, resulting in a net decrease of 369, the first decrease in the total number of cancer deaths since national mortality record keeping was instituted in 1930. The death rate from all cancers combined has decreased by 1.5% per year since 1993 among men and by 0.8% per year since 1992 among women. The mortality rate has also continued to decrease for the three most common cancer sites in men (lung and bronchus, colon and rectum, and prostate) and for breast and colon and rectum cancers in women. Lung cancer mortality among women continues to increase slightly. In analyses by race and ethnicity, African American men and women have 40% and 18% higher death rates from all cancers combined than White men and women, respectively. Cancer incidence and death rates are lower in other racial and ethnic groups than in Whites and African Americans for all sites combined and for the four major cancer sites. However, these groups generally have higher rates for stomach, liver, and cervical cancers than Whites. Furthermore, minority populations are more likely to be diagnosed with advanced stage disease than are Whites. Progress in reducing the burden of suffering and death from cancer can be accelerated by applying existing cancer control knowledge across all segments of the population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data

            Background Renal cell carcinoma is a common malignancy that often presents as a metastatic-disease for which there are no effective treatments. To gain insights into the mechanism of renal cell carcinogenesis, a number of genome-wide expression profiling studies have been performed. Surprisingly, there is very poor agreement among these studies as to which genes are differentially regulated. To better understand this lack of agreement we profiled renal cell tumor gene expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to previous microarray studies. Methods We hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected differential gene expression in the resulting dataset with parametric methods and identified keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test. Results We identify 1,234 genes that are more than three-fold changed in renal tumors by t-test, 800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37 genes that have been identified as being differentially expressed in three or more of five previous microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A key to the sensitivity and power of our analysis is filtering out defective samples and genes that are not reliably detected. Conclusions The widespread use of sample-wise voting schemes for detecting differential expression that do not control for false positives likely account for the poor overlap among previous studies. Among the many genes we identified using parametric methods that were not previously reported as being differentially expressed in renal cell tumors are several oncogenes and tumor suppressor genes that likely play important roles in renal cell carcinogenesis. This highlights the need for rigorous statistical approaches in microarray studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ESM-1 is a novel human endothelial cell-specific molecule expressed in lung and regulated by cytokines.

              We here report the identification of a novel human endothelial cell-specific molecule (called ESM-1) cloned from a human umbilical vein endothelial cell (HUVEC) cDNA library. Constitutive ESM-1 gene expression (as demonstrated by Northern blot and reverse transcription-polymerase chain reaction analysis) was found in HUVECs but not in the other human cell lines tested. The cDNA sequence contains an open reading frame of 552 nucleotides and a 1398-nucleotide 3'-untranslated region including several domains involved in mRNA instability and five putative polyadenylation consensus sequences. The deduced 184-amino acid sequence defines a cysteine-rich protein with a functional NH2-terminal hydrophobic signal sequence. Searches in several data bases confirmed the unique identity of this sequence. A rabbit immune serum raised against the 14-kDa COOH-terminal peptide of ESM-1 immunoprecipitated a 20-kDa protein only in ESM-1-transfected COS cells. Immunoblotting and immunoprecipitation of HUVEC lysates revealed a specific 20-kDa band corresponding to ESM-1. In addition, constitutive ESM-1 gene expression was shown to be tissue-restricted to the human lung. Southern blot analysis suggests that a single gene encodes ESM-1. A time-dependent up-regulation of ESM-1 mRNA was seen after addition of tumor necrosis factor alpha (TNFalpha) or interleukin (IL)-1beta but not with IL-4 or interferon gamma (IFNgamma) alone. In addition, when IFNgamma was combined with TNFalpha, IFNgamma inhibited the TNFalpha-induced increase of ESM-1 mRNA level. These data suggest that ESM-1 may have potent implications in the areas of vascular cell biology and human lung physiology.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2008
                18 January 2008
                : 8
                : 14
                Affiliations
                [1 ]INSERM U774, Lille 59019, France
                [2 ]Pasteur Institute, Lille 59019, France
                [3 ]University of Medicine and Pharmacy, Iasi 700111, Romania
                [4 ]Clinique des Maladies Respiratoires, Hôpital A Calmette, CHRU, Lille 59037, France
                Article
                1471-2407-8-14
                10.1186/1471-2407-8-14
                2254430
                18205914
                137c6dc9-af19-4392-a16a-3619f6c6a350
                Copyright © 2008 Depontieu et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 July 2007
                : 18 January 2008
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article