30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          The simultaneous analysis of total nitrogen and total phosphorus in natural waters

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas

            Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges

              Atmospheric carbon dioxide (CO2) levels are rapidly rising causing an increase in the partial pressure of CO2 (pCO2) in the ocean and a reduction in pH known as ocean acidification (OA). Natural volcanic seeps in Papua New Guinea expel 99% pure CO2 and thereby offer a unique opportunity to explore the effects of OA in situ. The corals Acropora millepora and Porites cylindrica were less abundant and hosted significantly different microbial communities at the CO2 seep than at nearby control sites <500 m away. A primary driver of microbial differences in A. millepora was a 50% reduction of symbiotic Endozoicomonas. This loss of symbiotic taxa from corals at the CO2 seep highlights a potential hurdle for corals to overcome if they are to adapt to and survive OA. In contrast, the two sponges Coelocarteria singaporensis and Cinachyra sp. were ∼40-fold more abundant at the seep and hosted a significantly higher relative abundance of Synechococcus than sponges at control sites. The increase in photosynthetic microbes at the seep potentially provides these species with a nutritional benefit and enhanced scope for growth under future climate scenarios (thus, flexibility in symbiosis may lead to a larger niche breadth). The microbial community in the apparently pCO2-sensitive sponge species S. massa was not significantly different between sites. These data show that responses to elevated pCO2 are species-specific and that the stability and flexibility of microbial partnerships may have an important role in shaping and contributing to the fitness and success of some hosts.
                Bookmark

                Author and article information

                Journal
                Global Change Biology
                Glob Change Biol
                Wiley-Blackwell
                13541013
                April 2017
                :
                :
                Article
                10.1111/gcb.13695
                28429531
                13892d3c-aa6d-4ccf-be7f-fb1ad14876ce
                History

                Comments

                Comment on this article