18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Silk Materials Functionalized via Genetic Engineering for Biomedical Applications

      review-article
      1 , 2 , 1 , 2 , *
      Materials
      MDPI
      bioengineered silk, biomaterials, functionalization, genetic engineering, biomedicine

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          RGD and other recognition sequences for integrins.

          Proteins that contain the Arg-Gly-Asp (RGD) attachment site, together with the integrins that serve as receptors for them, constitute a major recognition system for cell adhesion. The RGD sequence is the cell attachment site of a large number of adhesive extracellular matrix, blood, and cell surface proteins, and nearly half of the over 20 known integrins recognize this sequence in their adhesion protein ligands. Some other integrins bind to related sequences in their ligands. The integrin-binding activity of adhesion proteins can be reproduced by short synthetic peptides containing the RGD sequence. Such peptides promote cell adhesion when insolubilized onto a surface, and inhibit it when presented to cells in solution. Reagents that bind selectively to only one or a few of the RGD-directed integrins can be designed by cyclizing peptides with selected sequences around the RGD and by synthesizing RGD mimics. As the integrin-mediated cell attachment influences and regulates cell migration, growth, differentiation, and apoptosis, the RGD peptides and mimics can be used to probe integrin functions in various biological systems. Drug design based on the RGD structure may provide new treatments for diseases such as thrombosis, osteoporosis, and cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Silk as a Biomaterial.

            Silks are fibrous proteins with remarkable mechanical properties produced in fiber form by silkworms and spiders. Silk fibers in the form of sutures have been used for centuries. Recently regenerated silk solutions have been used to form a variety of biomaterials, such as gels, sponges and films, for medical applications. Silks can be chemically modified through amino acid side chains to alter surface properties or to immobilize cellular growth factors. Molecular engineering of silk sequences has been used to modify silks with specific features, such as cell recognition or mineralization. The degradability of silk biomaterials can be related to the mode of processing and the corresponding content of beta sheet crystallinity. Several primary cells and cell lines have been successfully grown on different silk biomaterials to demonstrate a range of biological outcomes. Silk biomaterials are biocompatible when studied in vitro and in vivo. Silk scaffolds have been successfully used in wound healing and in tissue engineering of bone, cartilage, tendon and ligament tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomedical applications of collagen.

              Collagen is regarded as one of the most useful biomaterials. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenecity, made collagen the primary resource in medical applications. The main applications of collagen as drug delivery systems are collagen shields in ophthalmology, sponges for burns/wounds, mini-pellets and tablets for protein delivery, gel formulation in combination with liposomes for sustained drug delivery, as controlling material for transdermal delivery, and nanoparticles for gene delivery and basic matrices for cell culture systems. It was also used for tissue engineering including skin replacement, bone substitutes, and artificial blood vessels and valves. This article reviews biomedical applications of collagen including the collagen film, which we have developed as a matrix system for evaluation of tissue calcification and for the embedding of a single cell suspension for tumorigenic study. The advantages and disadvantages of each system are also discussed.
                Bookmark

                Author and article information

                Journal
                Materials (Basel)
                Materials (Basel)
                materials
                Materials
                MDPI
                1996-1944
                12 December 2017
                December 2017
                : 10
                : 12
                : 1417
                Affiliations
                [1 ]Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-688 Poznan, Poland; to.deptuch@ 123456gmail.com
                [2 ]Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-688 Poznan, Poland
                Author notes
                [* ]Correspondence: hanna.dams-kozlowska@ 123456wco.pl ; Tel.: +48-61-88-50-874
                Author information
                https://orcid.org/0000-0003-2349-419X
                Article
                materials-10-01417
                10.3390/ma10121417
                5744352
                29231863
                1395677c-ced3-4d34-ba97-237a268718a9
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 November 2017
                : 06 December 2017
                Categories
                Review

                bioengineered silk,biomaterials,functionalization,genetic engineering,biomedicine

                Comments

                Comment on this article