35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of the Anti-Obesity Effects of Oxytocin in Diet-Induced Obese Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The endogenous cannabinoid system controls extinction of aversive memories.

          Acquisition and storage of aversive memories is one of the basic principles of central nervous systems throughout the animal kingdom. In the absence of reinforcement, the resulting behavioural response will gradually diminish to be finally extinct. Despite the importance of extinction, its cellular mechanisms are largely unknown. The cannabinoid receptor 1 (CB1) and endocannabinoids are present in memory-related brain areas and modulate memory. Here we show that the endogenous cannabinoid system has a central function in extinction of aversive memories. CB1-deficient mice showed strongly impaired short-term and long-term extinction in auditory fear-conditioning tests, with unaffected memory acquisition and consolidation. Treatment of wild-type mice with the CB1 antagonist SR141716A mimicked the phenotype of CB1-deficient mice, revealing that CB1 is required at the moment of memory extinction. Consistently, tone presentation during extinction trials resulted in elevated levels of endocannabinoids in the basolateral amygdala complex, a region known to control extinction of aversive memories. In the basolateral amygdala, endocannabinoids and CB1 were crucially involved in long-term depression of GABA (gamma-aminobutyric acid)-mediated inhibitory currents. We propose that endocannabinoids facilitate extinction of aversive memories through their selective inhibitory effects on local inhibitory networks in the amygdala.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators.

            To gain insight into the function of peroxisome proliferator-activated receptor (PPAR) isoforms in rodents, we disrupted the ligand-binding domain of the alpha isoform of mouse PPAR (mPPAR alpha) by homologous recombination. Mice homozygous for the mutation lack expression of mPPAR alpha protein and yet are viable and fertile and exhibit no detectable gross phenotypic defects. Remarkably, these animals do not display the peroxisome proliferator pleiotropic response when challenged with the classical peroxisome proliferators, clofibrate and Wy-14,643. Following exposure to these chemicals, hepatomegaly, peroxisome proliferation, and transcriptional-activation of target genes were not observed. These results clearly demonstrate that mPPAR alpha is the major isoform required for mediating the pleiotropic response resulting from the actions of peroxisome proliferators. mPPAR alpha-deficient animals should prove useful to further investigate the role of this receptor in hepatocarcinogenesis, fatty acid metabolism, and cell cycle regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The expectant brain: adapting for motherhood.

              A successful pregnancy requires multiple adaptations of the mother's physiology to optimize fetal growth and development, to protect the fetus from adverse programming, to provide impetus for timely parturition and to ensure that adequate maternal care is provided after parturition. Many of these adaptations are organized by the mother's brain, predominantly through changes in neuroendocrine systems, and these changes are primarily driven by the hormones of pregnancy. By contrast, adaptations in the mother's brain during lactation are maintained by external stimuli from the young. The changes in pregnancy are not necessarily innocuous: they may predispose the mother to post-partum mood disorders.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                27 September 2011
                : 6
                : 9
                : e25565
                Affiliations
                [1 ]Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
                [2 ]Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
                [3 ]Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Naples, Italy
                [4 ]Centre Hospitalier Régional de la Citadelle, University of Liege, Liege, Belgium
                [5 ]Centre of Immunology, University of Liege, CHU B-23, Liege, Belgium
                [6 ]Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
                Clermont Université, France
                Author notes

                Conceived and designed the experiments: ND FRJ. Performed the experiments: ND FRJ CVD LB MF AC ALB SP VDM FP. Analyzed the data: ND. Contributed reagents/materials/analysis tools: JJL WW VG. Wrote the paper: ND FRJ.

                Article
                PONE-D-11-11660
                10.1371/journal.pone.0025565
                3181274
                21980491
                13a193ee-1b67-49c1-8c26-ab4ad0c001a4
                Deblon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 June 2011
                : 6 September 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Endocrine System
                Endocrine Physiology
                Hormones
                Oxytocin
                Biochemistry
                Lipids
                Lipid Metabolism
                Hormones
                Medicine
                Anatomy and Physiology
                Endocrine System
                Endocrine Physiology
                Hormones
                Endocrinology
                Endocrine Physiology
                Hormones
                Nutrition
                Obesity

                Uncategorized
                Uncategorized

                Comments

                Comment on this article