11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of SkitoSnack, an Artificial Blood Meal Replacement, on Aedes aegypti Life History Traits and Gut Microbiota

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Public health research and vector control frequently require the rearing of large numbers of vector mosquitoes. All target vector mosquito species are anautogenous, meaning that females require vertebrate blood for egg production. Vertebrate blood, however, is costly, with a short shelf life. To overcome these constraints, we have developed SkitoSnack, an artificial blood meal replacement for the mosquito Aedes aegypti, the vector of dengue, Zika and chikungunya virus. SkitoSnack contains bovine serum albumin and hemoglobin as protein source as well as egg yolk and a bicarbonate buffer. SkitoSnack-raised females had comparable life history traits as blood-raised females. Mosquitoes reared from SkitoSnack-fed females had similar levels of infection and dissemination when orally challenged with dengue virus type 2 (DENV-2) and significantly lower infection with DENV-4. When SkitoSnack was used as a vehicle for DENV-2 delivery, blood-raised and SkitoSnack-raised females were equally susceptible. The midgut microbiota differed significantly between mosquitoes fed on SkitoSnack and mosquitoes fed on blood. By rearing 20 generations of Aedes exclusively on SkitoSnack, we have proven that this artificial diet can replace blood in mosquito mass rearing.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Wolbachia: master manipulators of invertebrate biology.

          Wolbachia are common intracellular bacteria that are found in arthropods and nematodes. These alphaproteobacteria endosymbionts are transmitted vertically through host eggs and alter host biology in diverse ways, including the induction of reproductive manipulations, such as feminization, parthenogenesis, male killing and sperm-egg incompatibility. They can also move horizontally across species boundaries, resulting in a widespread and global distribution in diverse invertebrate hosts. Here, we review the basic biology of Wolbachia, with emphasis on recent advances in our understanding of these fascinating endosymbionts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The gut bacteria of insects: nonpathogenic interactions.

            The diversity of the Insecta is reflected in the large and varied microbial communities inhabiting the gut. Studies, particularly with termites and cockroaches, have focused on the nutritional contributions of gut bacteria in insects living on suboptimal diets. The indigenous gut bacteria, however, also play a role in withstanding the colonization of the gut by non-indigenous species including pathogens. Gut bacterial consortia adapt by the transfer of plasmids and transconjugation between bacterial strains, and some insect species provide ideal conditions for bacterial conjugation, which suggests that the gut is a "hot spot" for gene transfer. Genomic analysis provides new avenues for the study of the gut microbial community and will reveal the molecular foundations of the relationships between the insect and its microbiome. In this review the intestinal bacteria is discussed in the context of developing our understanding of symbiotic relationships, of multitrophic interactions between insects and plant or animal host, and in developing new strategies for controlling insect pests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mosquitoes rely on their gut microbiota for development.

              Field studies indicate adult mosquitoes (Culicidae) host low diversity communities of bacteria that vary greatly among individuals and species. In contrast, it remains unclear how adult mosquitoes acquire their microbiome, what influences community structure, and whether the microbiome is important for survival. Here, we used pyrosequencing of 16S rRNA to characterize the bacterial communities of three mosquito species reared under identical conditions. Two of these species, Aedes aegypti and Anopheles gambiae, are anautogenous and must blood-feed to produce eggs, while one, Georgecraigius atropalpus, is autogenous and produces eggs without blood feeding. Each mosquito species contained a low diversity community comprised primarily of aerobic bacteria acquired from the aquatic habitat in which larvae developed. Our results suggested that the communities in Ae. aegypti and An. gambiae larvae share more similarities with one another than with G. atropalpus. Studies with Ae. aegypti also strongly suggested that adults transstadially acquired several members of the larval bacterial community, but only four genera of bacteria present in blood fed females were detected on eggs. Functional assays showed that axenic larvae of each species failed to develop beyond the first instar. Experiments with Ae. aegypti indicated several members of the microbial community and Escherichia coli successfully colonized axenic larvae and rescued development. Overall, our results provide new insights about the acquisition and structure of bacterial communities in mosquitoes. They also indicate that three mosquito species spanning the breadth of the Culicidae depend on their gut microbiome for development. © 2014 John Wiley & Sons Ltd.
                Bookmark

                Author and article information

                Contributors
                immoh@nmsu.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                23 July 2018
                23 July 2018
                2018
                : 8
                : 11023
                Affiliations
                [1 ]ISNI 0000 0001 0687 2182, GRID grid.24805.3b, Department of Biology, , New Mexico State University, ; Las Cruces, NM 88003 USA
                [2 ]ISNI 0000 0001 0687 2182, GRID grid.24805.3b, Institute of Applied Biosciences, , New Mexico State University, ; Las Cruces, NM USA
                [3 ]ISNI 0000 0001 0687 2182, GRID grid.24805.3b, Molecular Biology Program, , New Mexico State University, ; Las Cruces, NM USA
                [4 ]ISNI 0000 0001 0687 2182, GRID grid.24805.3b, Department of Computer Science, , New Mexico State University, ; Las Cruces, NM USA
                [5 ]ISNI 0000 0001 0687 2182, GRID grid.24805.3b, Department of Plant and Environmental Sciences, , New Mexico State University, ; Las Cruces, NM USA
                Article
                29415
                10.1038/s41598-018-29415-5
                6056539
                30038361
                13a79baa-e4d4-43ef-8f8a-a6083ceb098f
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 March 2018
                : 9 July 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000865, Bill and Melinda Gates Foundation;
                Award ID: GCE SkitoSnack
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article