19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Dysbiosis in Animals Due to Environmental Chemical Exposures

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut microbiome consists of over 10 3–10 4 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs), heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Gut Microbiota in Cardiovascular Health and Disease.

          Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through many pathways, including the trimethylamine/trimethylamine N-oxide pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these metabolism-dependent pathways, metabolism-independent processes are suggested to also potentially contribute to cardiovascular disease pathogenesis. For example, heart failure-associated splanchnic circulation congestion, bowel wall edema, and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are thought to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites, and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon.

            Colorectal cancer is the most abundant cause of cancer mortality in the Western world. Nutrition and the microbial flora are considered to have a marked influence on the risk of colorectal cancer, the formation of butyrate and other short-chain fatty acids (SCFAs) possibly playing a major role as chemopreventive products of microbial fermentation in the colon. In this study, we investigated the effects of butyrate, other SCFAs, and of a number of phenolic SCFA and trans-cinnamic acid derivatives formed during the intestinal degradation of polyphenolic constituents of fruits and vegetables on global histone deacetylase (HDAC) activity in nuclear extracts from colon carcinoma cell cultures using tert-butoxycarbonyl-lysine (acetylated)-4-amino-7-methylcoumarin (Boc-Lys(Ac)-AMC) as substrate. Inhibition of HDAC activity, e.g., by butyrate, is related to a suppression of malignant transformation and a stimulation of apoptosis of precancerous colonic cells. In nuclear extracts from HT-29 human colon carcinoma cells, butyrate was found to be the most potent HDAC inhibitor (IC50=0.09 mM), while other SCFAs such as propionate were less potent. In the same assay, p-coumaric acid (IC50=0.19 mM), 3-(4-OH-phenyl)-propionate (IC50=0.62 mM) and caffeic acid (IC50=0.85 mM) were the most potent HDAC inhibitors among the polyphenol metabolites tested. Interestingly, butyrate was also the most potent HDAC inhibitor in a whole-cell HeLa Mad 38-based reporter gene assay, while all polyphenol metabolites and all other SCFAs tested were much less potent; some were completely inactive. The findings suggest that butyrate plays an outstanding role as endogenous HDAC inhibitor in the colon, and that other SCFAs and HDAC-inhibitory polyphenol metabolites present in the colon seem to play a much smaller role, probably because of their limited levels, their marked cytotoxicity and/or their limited intracellular availability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sodium butyrate inhibits histone deacetylation in cultured cells.

              Sodium butyrate in millimolar concentrations causes an accumulation of acetylated histone species in a variety of vertebrate cell lines. In all lines tested, butyrate caused hyperacetylation of H3 and H4, and in rat IRC8 cells, H2A and H2B were also affected. In Friend erythroleukemic cells, butyrate also induces the synthesis of a nonhistone chromosomal protein, IP25. butyrate does not affect the rate of histone acetylation in cell-free extracts of nuclei of Friend cells. Rather, this fatty acid inhibits histone deacetylation. Cell-free extracts of either control cells or butyrate-grown cells contain comparable levels of histone-deacetylating activity. This in vitro activity is inhibited by the addition of butyrate to the extracts. Thus butyrate appears to be an inhibitor of histone deacetylases both in vivo and in vitro.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                08 September 2017
                2017
                : 7
                : 396
                Affiliations
                [1] 1Bond Life Sciences Center, University of Missouri Columbia, MO, United States
                [2] 2Biomedical Sciences, University of Missouri Columbia, MO, United States
                [3] 3Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri Columbia, MO, United States
                [4] 4Genetics Area Program, University of Missouri Columbia, MO, United States
                Author notes

                Edited by: Yousef Abu Kwaik, University of Louisville, United States

                Reviewed by: Markus Arnoldini, ETH Zurich, Switzerland; Chang H. Kim, Purdue University, United States

                *Correspondence: Cheryl S. Rosenfeld Rosenfeldc@ 123456missouri.edu
                Article
                10.3389/fcimb.2017.00396
                5596107
                28936425
                13a87e9c-4036-4ee8-a5b5-7f2377822bc5
                Copyright © 2017 Rosenfeld.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 June 2017
                : 23 August 2017
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 167, Pages: 17, Words: 14850
                Categories
                Microbiology
                Review

                Infectious disease & Microbiology
                endocrine disrupting chemicals,arsenic,nanoparticles,lead,heavy metals,air pollution,gastrointestinal system,gut-microbiome-brain axis

                Comments

                Comment on this article