59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy

      research-article
      , , ,
      Journal for Immunotherapy of Cancer
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the recent regulatory approval of Talimogene laherparepvec (T-VEC) for the treatment of advanced of melanoma in the United States, Europe and Australia, oncolytic virus immunotherapy has earned its place in the clinic. However, the adoption of T-VEC by the U.S. oncology community has been slow, and so far has been largely limited to specialized cancer centers. Limiting factors include the intratumoral route of administration, which is unfamiliar to medical oncologists, biosafety concerns related to the use of a live virus in the clinic, and the explosion of other therapeutic strategies now available for the treatment of advanced melanoma. Herein, we review the development of T-VEC, and suggest how it fits into the in the current clinical treatment paradigm, and provide pearls for drug preparation, administration, and monitoring of response to therapy.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.

          Vaccination with irradiated B16 melanoma cells expressing either GM-CSF (Gvax) or Flt3-ligand (Fvax) combined with antibody blockade of the negative T-cell costimulatory receptor cytotoxic T-lymphocyte antigen-4 (CTLA-4) promotes rejection of preimplanted tumors. Despite CTLA-4 blockade, T-cell proliferation and cytokine production can be inhibited by the interaction of programmed death-1 (PD-1) with its ligands PD-L1 and PD-L2 or by the interaction of PD-L1 with B7-1. Here, we show that the combination of CTLA-4 and PD-1 blockade is more than twice as effective as either alone in promoting the rejection of B16 melanomas in conjunction with Fvax. Adding alphaPD-L1 to this regimen results in rejection of 65% of preimplanted tumors vs. 10% with CTLA-4 blockade alone. Combination PD-1 and CTLA-4 blockade increases effector T-cell (Teff) infiltration, resulting in highly advantageous Teff-to-regulatory T-cell ratios with the tumor. The fraction of tumor-infiltrating Teffs expressing CTLA-4 and PD-1 increases, reflecting the proliferation and accumulation of cells that would otherwise be anergized. Combination blockade also synergistically increases Teff-to-myeloid-derived suppressor cell ratios within B16 melanomas. IFN-gamma production increases in both the tumor and vaccine draining lymph nodes, as does the frequency of IFN-gamma/TNF-alpha double-producing CD8(+) T cells within the tumor. These results suggest that combination blockade of the PD-1/PD-L1- and CTLA-4-negative costimulatory pathways allows tumor-specific T cells that would otherwise be inactivated to continue to expand and carry out effector functions, thereby shifting the tumor microenvironment from suppressive to inflammatory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties.

            Herpes simplex virus type-1 (HSV1) in which the neurovirulence factor ICP34.5 is inactivated has been shown to direct tumour-specific cell lysis in several tumour models. Such viruses have also been shown to be safe in Phase I clinical trials by intra-tumoral injection in glioma and melanoma patients. Previous work has used serially passaged laboratory isolates of HSV1 which we hypothesized may be attenuated in their lytic capability in human tumour cells as compared to more recent clinical isolates. To produce ICP34.5 deleted HSV with enhanced oncolytic potential, we tested two clinical isolates. Both showed improved cell killing in all human tumour cell lines tested compared to a laboratory strain (strain 17+). ICP34.5 was then deleted from one of the clinical isolate strains (strain JS1). Enhanced tumour cell killing with ICP34.5 deleted HSV has also been reported by the deletion of ICP47 by the up-regulation of US11 which occurs following this mutation. Thus to further improve oncolytic properties, ICP47 was removed from JS1/ICP34.5-. As ICP47 also functions to block antigen processing in HSV infected cells, this mutation was also anticipated to improve the immune stimulating properties of the virus. Finally, to provide viruses with maximum oncolytic and immune stimulating properties, the gene for human or mouse GM-CSF was inserted into the JS1/34.5-/47- vector backbone. GM-CSF is a potent immune stimulator promoting the differentiation of progenitor cells into dendritic cells and has shown promise in clinical trials when delivered by a number of means. Combination of GM-CSF with oncolytic therapy may be particularly effective as the necrotic cell death accompanying virus replication should serve to effectively release tumour antigens to then induce a GM-CSF-enhanced immune response. This would, in effect, provide an in situ, patient-specific, anti-tumour vaccine. The viruses constructed were tested in vitro in human tumour cell lines and in vivo in mice demonstrating significant anti-tumour effects. These were greatly improved compared to viruses not containing each of the modifications described. In vivo, both injected and non-injected tumours showed significant shrinkage or clearance and mice were protected against re-challenge with tumour cells. The data presented indicate that JS1/ICP34.5-/ICP47-/GM-CSF acts as a powerful oncolytic agent which may be appropriate for the treatment of a number of solid tumour types in man.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor.

              To conduct a phase I clinical trial with a second-generation oncolytic herpes simplex virus (HSV) expressing granulocyte macrophage colony-stimulating factor (Onco VEXGM-CSF) to determine the safety profile of the virus, look for evidence of biological activity, and identify a dosing schedule for later studies. The virus was administered by intratumoral injection in patients with cutaneous or s.c. deposits of breast, head and neck and gastrointestinal cancers, and malignant melanoma who had failed prior therapy. Thirteen patients were in a single-dose group, where doses of 10(6), 10(7), and 10(8) plaque-forming units (pfu)/mL were tested, and 17 patients were in a multidose group testing a number of dose regimens. The virus was generally well tolerated with local inflammation, erythema, and febrile responses being the main side effects. The local reaction to injection was dose limiting in HSV-seronegative patients at 10(7) pfu/mL. The multidosing phase thus tested seroconverting HSV-seronegative patients with 10(6) pfu/mL followed by multiple higher doses (up to 10(8) pfu/mL), which was well tolerated by all patients. Biological activity (virus replication, local reactions, granulocyte macrophage colony-stimulating factor expression, and HSV antigen-associated tumor necrosis), was observed. The duration of local reactions and virus replication suggested that dosing every 2 to 3 weeks was appropriate. Nineteen of 26 patient posttreatment biopsies contained residual tumor of which 14 showed tumor necrosis, which in some cases was extensive, or apoptosis. In all cases, areas of necrosis also strongly stained for HSV. The overall responses to treatment were that three patients had stable disease, six patients had tumors flattened (injected and/or uninjected lesions), and four patients showed inflammation of uninjected as well as the injected tumor, which, in nearly all cases, became inflamed. Onco VEXGM-CSF is well tolerated and can be safely administered using the multidosing protocol described. Evidence of an antitumor effect was seen.
                Bookmark

                Author and article information

                Contributors
                (732) 235-7701 , hr251@rwjms.rutgers.edu
                (732) 235-9843 , as2300@cinj.rutgers.edu
                (732) 235-8236 , kanemp@cinj.rutgers.edu
                (732) 235-7701 , howard.kaufman@rutgers.edu
                Journal
                J Immunother Cancer
                J Immunother Cancer
                Journal for Immunotherapy of Cancer
                BioMed Central (London )
                2051-1426
                20 September 2016
                20 September 2016
                2016
                : 4
                : 53
                Affiliations
                Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2508B, New Brunswick, NJ 08901 USA
                Article
                158
                10.1186/s40425-016-0158-5
                5029010
                27660707
                13bd5a1f-695f-46ba-8f00-7d63714d7ba0
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 July 2016
                : 8 August 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000054, National Cancer Institute;
                Award ID: UM1 CA 186716-01
                Award Recipient :
                Categories
                Clinical Trials Monitor
                Custom metadata
                © The Author(s) 2016

                Comments

                Comment on this article