20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microarray Analysis Uncovers a Role for Tip60 in Nervous System Function and General Metabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tip60 is a key histone acetyltransferase (HAT) enzyme that plays a central role in diverse biological processes critical for general cell function; however, the chromatin-mediated cell-type specific developmental pathways that are dependent exclusively upon the HAT activity of Tip60 remain to be explored.

          Methods and Findings

          Here, we investigate the role of Tip60 HAT activity in transcriptional control during multicellular development in vivo by examining genome-wide changes in gene expression in a Drosophila model system specifically depleted for endogenous dTip60 HAT function.

          Conclusions

          We show that amino acid residue E431 in the catalytic HAT domain of dTip60 is critical for the acetylation of endogenous histone H4 in our fly model in vivo, and demonstrate that dTip60 HAT activity is essential for multicellular development. Moreover, our results uncover a novel role for Tip60 HAT activity in controlling neuronal specific gene expression profiles essential for nervous system function as well as a central regulatory role for Tip60 HAT function in general metabolism.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          DAVID: Database for Annotation, Visualization, and Integrated Discovery.

          Functional annotation of differentially expressed genes is a necessary and critical step in the analysis of microarray data. The distributed nature of biological knowledge frequently requires researchers to navigate through numerous web-accessible databases gathering information one gene at a time. A more judicious approach is to provide query-based access to an integrated database that disseminates biologically rich information across large datasets and displays graphic summaries of functional information. Database for Annotation, Visualization, and Integrated Discovery (DAVID; http://www.david.niaid.nih.gov) addresses this need via four web-based analysis modules: 1) Annotation Tool - rapidly appends descriptive data from several public databases to lists of genes; 2) GoCharts - assigns genes to Gene Ontology functional categories based on user selected classifications and term specificity level; 3) KeggCharts - assigns genes to KEGG metabolic processes and enables users to view genes in the context of biochemical pathway maps; and 4) DomainCharts - groups genes according to PFAM conserved protein domains. Analysis results and graphical displays remain dynamically linked to primary data and external data repositories, thereby furnishing in-depth as well as broad-based data coverage. The functionality provided by DAVID accelerates the analysis of genome-scale datasets by facilitating the transition from data collection to biological meaning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histone acetyltransferases.

            Transcriptional regulation in eukaryotes occurs within a chromatin setting and is strongly influenced by nucleosomal barriers imposed by histone proteins. Among the well-known covalent modifications of histones, the reversible acetylation of internal lysine residues in histone amino-terminal domains has long been positively linked to transcriptional activation. Recent biochemical and genetic studies have identified several large, multisubunit enzyme complexes responsible for bringing about the targeted acetylation of histones and other factors. This review discusses our current understanding of histone acetyltransferases (HATs) or acetyltransferases (ATs): their discovery, substrate specificity, catalytic mechanism, regulation, and functional links to transcription, as well as to other chromatin-modifying activities. Recent studies underscore unexpected connections to both cellular regulatory processes underlying normal development and differentiation, as well as abnormal processes that lead to oncogenesis. Although the functions of HATs and the mechanisms by which they are regulated are only beginning to be understood, these fundamental processes are likely to have far-reaching implications for human biology and disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Histone acetylation and transcriptional regulatory mechanisms.

              K Struhl (1998)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                11 April 2011
                : 6
                : 4
                : e18412
                Affiliations
                [1]Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
                City of Hope National Medical Center and Beckman Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: ML KP JS XZ FE. Performed the experiments: ML KP JS XZ. Analyzed the data: ML KP JS XZ FE. Contributed reagents/materials/analysis tools: ML XZ. Wrote the paper: ML KP JS FE.

                [¤]

                Current address: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America

                Article
                PONE-D-10-04371
                10.1371/journal.pone.0018412
                3073973
                21494552
                13c041ee-a076-4fd5-bc79-6e806a012793
                Lorbeck et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 October 2010
                : 7 March 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Biology
                Biochemistry
                Metabolism
                Developmental Biology
                Genetics
                Epigenetics
                Genomics
                Chromosome Biology
                Molecular Cell Biology
                Chromosome Biology
                Neuroscience
                Neurobiology of Disease and Regeneration

                Uncategorized
                Uncategorized

                Comments

                Comment on this article