116
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Regulation of chromatin and gene expression by metabolic enzymes and metabolites

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P3">Metabolism and gene expression, which are two fundamental biological processes that are essential to all living organisms, reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival and differentiation. Metabolism feeds into the regulation of gene expression via metabolic enzymes and metabolites, which can modulate chromatin directly or indirectly — through regulation of the activity of chromatin trans-acting proteins, including histone-modifying enzymes, chromatin-remodelling complexes and transcription regulators. Deregulation of these metabolic activities has been implicated in human diseases, prominently including cancer. </p>

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1.

          The pyruvate kinase isoforms PKM1 and PKM2 are alternatively spliced products of the PKM2 gene. PKM2, but not PKM1, alters glucose metabolism in cancer cells and contributes to tumorigenesis by mechanisms that are not explained by its known biochemical activity. We show that PKM2 gene transcription is activated by hypoxia-inducible factor 1 (HIF-1). PKM2 interacts directly with the HIF-1α subunit and promotes transactivation of HIF-1 target genes by enhancing HIF-1 binding and p300 recruitment to hypoxia response elements, whereas PKM1 fails to regulate HIF-1 activity. Interaction of PKM2 with prolyl hydroxylase 3 (PHD3) enhances PKM2 binding to HIF-1α and PKM2 coactivator function. Mass spectrometry and anti-hydroxyproline antibody assays demonstrate PKM2 hydroxylation on proline-403/408. PHD3 knockdown inhibits PKM2 coactivator function, reduces glucose uptake and lactate production, and increases O(2) consumption in cancer cells. Thus, PKM2 participates in a positive feedback loop that promotes HIF-1 transactivation and reprograms glucose metabolism in cancer cells. Copyright © 2011 Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Histone core modifications regulating nucleosome structure and dynamics.

            Post-translational modifications of histones regulate all DNA-templated processes, including replication, transcription and repair. These modifications function as platforms for the recruitment of specific effector proteins, such as transcriptional regulators or chromatin remodellers. Recent data suggest that histone modifications also have a direct effect on nucleosomal architecture. Acetylation, methylation, phosphorylation and citrullination of the histone core may influence chromatin structure by affecting histone-histone and histone-DNA interactions, as well as the binding of histones to chaperones.
              • Record: found
              • Abstract: found
              • Article: not found

              ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect

              SUMMARY Pyruvate kinase M2 (PKM2) is upregulated in multiple cancer types and contributes to the Warburg effect by unclarified mechanisms. Here we demonstrate that EGFR-activated ERK2 binds directly to PKM2 I429/L431 via the ERK2 docking groove and phosphorylates PKM2 Ser37 but not PKM1. Phosphorylated PKM2 Ser37 recruits PIN1 for cis-trans isomerization of PKM2, which leads to PKM2 binding to importin α5 and nuclear translocation. Nuclear PKM2, acting as a coactivator of β-catenin, induces c-Myc expression, resulting in the upregulation of GLUT1, LDHA, and, in a positive feedback loop, PTB-dependent PKM2 expression. Replacement of wild type PKM2 with a nuclear translocation-deficient mutant (S37A) blocks the EGFR-promoted Warburg effect and brain tumor development. In addition, levels of PKM2 S37 phosphorylation correlate with EGFR and ERK1/2 activity in human glioblastoma specimens. Our findings highlight the importance of nuclear functions of PKM2 in the Warburg effect and tumorigenesis.

                Author and article information

                Journal
                Nature Reviews Molecular Cell Biology
                Nat Rev Mol Cell Biol
                Springer Nature
                1471-0072
                1471-0080
                June 21 2018
                Article
                10.1038/s41580-018-0029-7
                6907087
                29930302
                13c4efe2-764d-485f-aff3-630e45c9f8f1
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                Related Documents Log