18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From stem to roots: Tissue engineering in endodontics

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The vitality of dentin-pulp complex is fundamental to the life of tooth and is a priority for targeting clinical management strategies. Loss of the tooth, jawbone or both, due to periodontal disease, dental caries, trauma or some genetic disorders, affects not only basic mouth functions but aesthetic appearance and quality of life. One novel approach to restore tooth structure is based on biology: regenerative endodontic procedure by application of tissue engineering. Regenerative endodontics is an exciting new concept that seeks to apply the advances in tissue engineering to the regeneration of the pulp-dentin complex. The basic logic behind this approach is that patient-specific tissue-derived cell populations can be used to functionally replace integral tooth tissues. The development of such ‘test tube teeth’ requires precise regulation of the regenerative events in order to achieve proper tooth size and shape, as well as the development of new technologies to facilitate these processes. This article provides an extensive review of literature on the concept of tissue engineering and its application in endodontics, providing an insight into the new developmental approaches on the horizon.

          Key words:Regenerative, tissue engineering, stem cells, scaffold.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue engineering.

          The loss or failure of an organ or tissue is one of the most frequent, devastating, and costly problems in human health care. A new field, tissue engineering, applies the principles of biology and engineering to the development of functional substitutes for damaged tissue. This article discusses the foundations and challenges of this interdisciplinary field and its attempts to provide solutions to tissue creation and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stem cell properties of human dental pulp stem cells.

            In this study, we characterized the self-renewal capability, multi-lineage differentiation capacity, and clonogenic efficiency of human dental pulp stem cells (DPSCs). DPSCs were capable of forming ectopic dentin and associated pulp tissue in vivo. Stromal-like cells were reestablished in culture from primary DPSC transplants and re-transplanted into immunocompromised mice to generate a dentin-pulp-like tissue, demonstrating their self-renewal capability. DPSCs were also found to be capable of differentiating into adipocytes and neural-like cells. The odontogenic potential of 12 individual single-colony-derived DPSC strains was determined. Two-thirds of the single-colony-derived DPSC strains generated abundant ectopic dentin in vivo, while only a limited amount of dentin was detected in the remaining one-third. These results indicate that single-colony-derived DPSC strains differ from each other with respect to their rate of odontogenesis. Taken together, these results demonstrate that DPSCs possess stem-cell-like qualities, including self-renewal capability and multi-lineage differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth.

              The dental follicle is an ectomesenchymal tissue surrounding the developing tooth germ. It is believed that this tissue contains stem cells and lineage committed progenitor cells or precursor cells (PCs) for cementoblasts, periodontal ligament cells, and osteoblasts. In this study, we report the isolation of PCs derived from dental follicle of human third molar teeth. These fibroblast-like, colony forming and plastic adherent cells expressed putative stem cell markers Notch-1 and Nestin. We compared gene expressions of PCs, human mesenchymal stem cells (hMSCs), periodontal ligament cells (PDL-cells) and osteoblasts (MG63) for delimitation of PCs. Interestingly, PCs expressed higher amounts of insulin-like growth factor-2 (IGF-2) transcripts than hMSCs. Differentiation capacity was demonstrated under in vitro conditions for PCs. Long-term cultures with dexamethasone produced compact calcified nodules or appeared as plain membrane structures of different dimensions consisting of a connective tissue like matrix encapsulated by a mesothelium-like cellular structure. PCs differentially express osteocalcin (OCN) and bone sialoprotein (BS) after transplantation in immunocompromised mice but without any sign of cementum or bone formation. Therefore, our results demonstrate that cultured PCs are unique undifferentiated lineage committed cells residing in the periodontium prior or during tooth eruption.
                Bookmark

                Author and article information

                Journal
                J Clin Exp Dent
                J Clin Exp Dent
                Medicina Oral S.L.
                Journal of Clinical and Experimental Dentistry
                Medicina Oral S.L.
                1989-5488
                1 February 2012
                February 2012
                : 4
                : 1
                : e66-e71
                Affiliations
                [1 ]M.D.S., Post graduate student. Department of conservative dentistry and Endodontics. Govt.Dental college and Research Institute, Bangalore, India
                [2 ]M.D.S., Professor and Head. Department of conservative dentistry and Endodontics. Govt.Dental college and Research Institute, Bangalore, India
                [3 ]M.D.S., Professor and Head. Department of Periodontics. Indraprastha dental college, Ghaziabad,India
                [4 ]M.D.S., Professor. Department of Periodontics. Modern dental college and research center, Indore, India
                Author notes
                12-A Vaishali nagar Annapurna Road, Indore (Madhya Pradesh), India Pincode-452009 , E-mail: chandki.rita@ 123456gmail.com
                Article
                50678
                10.4317/jced.50678
                3908813
                13cae686-02f3-442e-b88a-19b9b389e413
                Copyright: © 2012 Medicina Oral S.L.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 September 2011
                : 22 August 2011
                Categories
                Review
                Biomaterials and Bioengineering in Dentistry

                Comments

                Comment on this article