19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stem Cell Therapy for Preventing Neonatal Diseases in the 21 st Century: Current Understanding and Challenges

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diseases of the preterm newborn such as bronchopulmonary dysplasia, necrotizing enterocolitis, cerebral palsy, and hypoxic-ischemic encephalopathy continue to be major causes of infant mortality and long-term morbidity. Effective therapies for the prevention or treatment for these conditions are still lacking as recent clinical trials have shown modest or no benefit. Stem cell therapy is rapidly emerging as a novel therapeutic tool for several neonatal diseases with encouraging pre-clinical results that hold promise for clinical translation. However, there are a number of unanswered questions and facets to the development of stem cell therapy as a clinical intervention. There is much work to be done to fully elucidate the mechanisms by which stem cell therapy is effective (e.g., anti-inflammatory versus pro-angiogenic), identifying important paracrine mediators, and determining the timing and type of therapy (e.g., cellular versus secretomes), as well as patient characteristics that are ideal. Importantly, the interaction between stem cell therapy and current, standard-of-care interventions is nearly completely unknown. In this review, we will focus predominantly on the use of mesenchymal stromal cells for neonatal diseases, highlighting the promises and challenges in clinical translation towards preventing neonatal diseases in the 21 st century.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Exosomes: a common pathway for a specialized function.

          Exosomes are membrane vesicles that are released by cells upon fusion of multivesicular bodies with the plasma membrane. Their molecular composition reflects their origin in endosomes as intraluminal vesicles. In addition to a common set of membrane and cytosolic molecules, exosomes harbor unique subsets of proteins linked to cell type-associated functions. Exosome secretion participates in the eradication of obsolete proteins but several findings, essentially in the immune system, indicate that exosomes constitute a potential mode of intercellular communication. Release of exosomes by tumor cells and their implication in the propagation of unconventional pathogens such as prions suggests their participation in pathological situations. These findings open up new therapeutic and diagnostic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties.

            Previous reports suggested that culture as 3D aggregates or as spheroids can increase the therapeutic potential of the adult stem/progenitor cells referred to as mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs). Here we used a hanging drop protocol to prepare human MSCs (hMSCs) as spheroids that maximally expressed TNFalpha stimulated gene/protein 6 (TSG-6), the antiinflammatory protein that was expressed at high levels by hMSCs trapped in the lung after i.v. infusion and that largely explained the beneficial effects of hMSCs in mice with myocardial infarcts. The properties of spheroid hMSCs were found to depend critically on the culture conditions. Under optimal conditions for expression of TSG-6, the hMSCs also expressed high levels of stanniocalcin-1, a protein with both antiinflammatory and antiapoptotic properties. In addition, they expressed high levels of three anticancer proteins: IL-24, TNFalpha-related apoptosis inducing ligand, and CD82. The spheroid hMSCs were more effective than hMSCs from adherent monolayer cultures in suppressing inflammatory responses in a coculture system with LPS-activated macrophages and in a mouse model for peritonitis. In addition, the spheroid hMSCs were about one-fourth the volume of hMSCs from adherent cultures. Apparently as a result, larger numbers of the cells trafficked through the lung after i.v. infusion and were recovered in spleen, liver, kidney, and heart. The data suggest that spheroid hMSCs may be more effective than hMSCs from adherent cultures in therapies for diseases characterized by sterile tissue injury and unresolved inflammation and for some cancers that are sensitive to antiinflammatory agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fibroblast precursors in normal and irradiated mouse hematopoietic organs.

              Using the in vitro colony assay, clonogenic fibroblast precursor cells (CFU-F) were detected in the bone marrow, spleen and thymus from adult mice. The survival curve for CFU-F of mouse bone marrow irradiated in vitro has a D0 of 220 r. Regeneration of bone marrow CFU-F after whole-body irradiation with 150 r is characterized by a marked secondary loss and post-irradiation lag and dip, lasting 6 days, followed by return to normal values by about the 25th day. This pattern of post-radiation recovery of CFU-F is similar to that of the CFU-s. In addition, during the first 6 hours following irradiation the number of CFU-F increased approximately twofold.
                Bookmark

                Author and article information

                Journal
                0100714
                6400
                Pediatr Res
                Pediatr. Res.
                Pediatric research
                0031-3998
                1530-0447
                8 July 2019
                14 May 2019
                15 November 2019
                : 10.1038/s41390-019-0425-5
                Affiliations
                [1 ]Division of Neonatology, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri
                [2 ]Department of Cardiovascular Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
                [3 ]Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, Ohio
                [4 ]Division of Neonatology, Department of Pediatrics, Children’s Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, Ontario, Canada
                [5 ]Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
                Author notes

                Author Contributions

                All authors made substantial contributions to conception and design, drafting the article, revising it critically for important intellectual content, and gave final approval of the version to be published.

                Corresponding Author: Dr. Venkatesh Sampath, MD, Professor of Pediatrics, Division of Neonatology Children’s Mercy Hospital, 2401 Gillham Road, Kansas City MO 64108, Phone: 816-234-3591, fax: 816-302-9887., vsampath@ 123456cmh.edu
                Article
                NIHMS1528575
                10.1038/s41390-019-0425-5
                6854309
                31086355
                13d6449e-5041-4475-a2f5-a2cc3ccb5f98

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Pediatrics
                mesenchymal stem cell,neonatal,bronchopulmonary dysplasia,necrotizing enterocolitis
                Pediatrics
                mesenchymal stem cell, neonatal, bronchopulmonary dysplasia, necrotizing enterocolitis

                Comments

                Comment on this article