98
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MtDNA analysis of global populations support that major population expansions began before Neolithic Time

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Agriculture resulted in extensive population growths and human activities. However, whether major human expansions started after Neolithic Time still remained controversial. With the benefit of 1000 Genome Project, we were able to analyze a total of 910 samples from 11 populations in Africa, Europe and Americas. From these random samples, we identified the expansion lineages and reconstructed the historical demographic variations. In all the three continents, we found that most major lineage expansions (11 out of 15 star lineages in Africa, all autochthonous lineages in Europe and America) coalesced before the first appearance of agriculture. Furthermore, major population expansions were estimated after Last Glacial Maximum but before Neolithic Time, also corresponding to the result of major lineage expansions. Considering results in current and previous study, global mtDNA evidence showed that rising temperature after Last Glacial Maximum offered amiable environments and might be the most important factor for prehistorical human expansions.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Farmers and their languages: the first expansions.

          The largest movements and replacements of human populations since the end of the Ice Ages resulted from the geographically uneven rise of food production around the world. The first farming societies thereby gained great advantages over hunter-gatherer societies. But most of those resulting shifts of populations and languages are complex, controversial, or both. We discuss the main complications and specific examples involving 15 language families. Further progress will depend on interdisciplinary research that combines archaeology, crop and livestock studies, physical anthropology, genetics, and linguistics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beringian Standstill and Spread of Native American Founders

            Native Americans derive from a small number of Asian founders who likely arrived to the Americas via Beringia. However, additional details about the intial colonization of the Americas remain unclear. To investigate the pioneering phase in the Americas we analyzed a total of 623 complete mtDNAs from the Americas and Asia, including 20 new complete mtDNAs from the Americas and seven from Asia. This sequence data was used to direct high-resolution genotyping from 20 American and 26 Asian populations. Here we describe more genetic diversity within the founder population than was previously reported. The newly resolved phylogenetic structure suggests that ancestors of Native Americans paused when they reached Beringia, during which time New World founder lineages differentiated from their Asian sister-clades. This pause in movement was followed by a swift migration southward that distributed the founder types all the way to South America. The data also suggest more recent bi-directional gene flow between Siberia and the North American Arctic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinctive Paleo-Indian migration routes from Beringia marked by two rare mtDNA haplogroups.

              It is widely accepted that the ancestors of Native Americans arrived in the New World via Beringia approximately 10 to 30 thousand years ago (kya). However, the arrival time(s), number of expansion events, and migration routes into the Western Hemisphere remain controversial because linguistic, archaeological, and genetic evidence have not yet provided coherent answers. Notably, most of the genetic evidence has been acquired from the analysis of the common pan-American mitochondrial DNA (mtDNA) haplogroups. In this study, we have instead identified and analyzed mtDNAs belonging to two rare Native American haplogroups named D4h3 and X2a. Phylogeographic analyses at the highest level of molecular resolution (69 entire mitochondrial genomes) reveal that two almost concomitant paths of migration from Beringia led to the Paleo-Indian dispersal approximately 15-17 kya. Haplogroup D4h3 spread into the Americas along the Pacific coast, whereas X2a entered through the ice-free corridor between the Laurentide and Cordilleran ice sheets. The examination of an additional 276 entire mtDNA sequences provides similar entry times for all common Native American haplogroups, thus indicating at least a dual origin for Paleo- Indians. A dual origin for the first Americans is a striking novelty from the genetic point of view, and it makes plausible a scenario positing that within a rather short period of time, there may have been several entries into the Americas from a dynamically changing Beringian source. Moreover, this implies that most probably more than one language family was carried along with the Paleo-Indians.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                18 October 2012
                2012
                : 2
                : 745
                Affiliations
                [1 ]MOE Key Laboratory of Contemporary Anthropology and Center for Evolutionary Biology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University
                [2 ]Chinese Academy of Sciences and Max-Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
                [3 ]Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences , Shanghai 200031, China
                Author notes
                Article
                srep00745
                10.1038/srep00745
                3475341
                23082240
                13d878c6-c7b0-4af7-a5c7-932e58480d7e
                Copyright © 2012, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 22 August 2012
                : 24 September 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article