2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physiological Basis of Salt Stress Tolerance in a Landrace and a Commercial Variety of Sweet Pepper ( Capsicum annuum L.)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salt stress is one of the most impactful abiotic stresses that plants must cope with. Plants’ ability to tolerate salt stress relies on multiple mechanisms, which are associated with biomass and yield reductions. Sweet pepper is a salt-sensitive crop that in Mediterranean regions can be exposed to salt build-up in the root zone due to irrigation. Understanding the physiological mechanisms that plants activate to adapt to soil salinization is essential to develop breeding programs and agricultural practices that counteract this phenomenon and ultimately minimize yield reductions. With this aim, the physiological and productive performances of Quadrato D’Asti, a common commercial sweet pepper cultivar in Italy, and Cazzone Giallo, a landrace of the Campania region (Italy), were compared under different salt stress treatments. Quadrato D’Asti had higher tolerance to salt stress when compared to Cazzone Giallo in terms of yield, which was associated with higher leaf biomass vs. fruit ratio in the former. Ion accumulation and profiling between the two genoptypes revealed that Quadrato D’Asti was more efficient at excluding chloride from green tissues, allowing the maintenance of photosystem functionality under stress. In contrast, Cazzone Giallo seemed to compartmentalize most sodium in the stem. While sodium accumulation in the stems has been shown to protect shoots from sodium toxicity, in pepper and/or in the specific experimental conditions imposed, this strategy was less efficient than chloride exclusion for salt stress tolerance.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.

          A series of experiments is presented investigating short term and long term changes of the nature of the response of rate of CO2 assimilation to intercellular p(CO2). The relationships between CO2 assimilation rate and biochemical components of leaf photosynthesis, such as ribulose-bisphosphate (RuP2) carboxylase-oxygenase activity and electron transport capacity are examined and related to current theory of CO2 assimilation in leaves of C3 species. It was found that the response of the rate of CO2 assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at low and high intercellular p(CO2). In longer term changes in CO2 assimilation rate, induced by different growth conditions, the initial slope of the response of CO2 assimilation rate to intercellular p(CO2) could be correlated to in vitro measurements of RuP2 carboxylase activity. Also, CO2 assimilation rate at high p(CO2) could be correlated to in vitro measurements of electron transport rate. These results are consistent with the hypothesis that CO2 assimilation rate is limited by the RuP2 saturated rate of the RuP2 carboxylase-oxygenase at low intercellular p(CO2) and by the rate allowed by RuP2 regeneration capacity at high intercellular p(CO2).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation

            Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction – somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plant Salinity Stress: Many Unanswered Questions Remain

              Salinity is a major threat to modern agriculture causing inhibition and impairment of crop growth and development. Here, we not only review recent advances in salinity stress research in plants but also revisit some basic perennial questions that still remain unanswered. In this review, we analyze the physiological, biochemical, and molecular aspects of Na+ and Cl− uptake, sequestration, and transport associated with salinity. We discuss the role and importance of symplastic versus apoplastic pathways for ion uptake and critically evaluate the role of different types of membrane transporters in Na+ and Cl− uptake and intercellular and intracellular ion distribution. Our incomplete knowledge regarding possible mechanisms of salinity sensing by plants is evaluated. Furthermore, a critical evaluation of the mechanisms of ion toxicity leads us to believe that, in contrast to currently held ideas, toxicity only plays a minor role in the cytosol and may be more prevalent in the vacuole. Lastly, the multiple roles of K+ in plant salinity stress are discussed.
                Bookmark

                Author and article information

                Journal
                Plants (Basel)
                Plants (Basel)
                plants
                Plants
                MDPI
                2223-7747
                25 June 2020
                June 2020
                : 9
                : 6
                : 795
                Affiliations
                [1 ]National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Ercolano, 80056 Naples, Italy; pasquale.giorio@ 123456cnr.it (P.G.); marcoliva@ 123456hotmail.it (M.O.); gprguida@ 123456gmail.com (G.G.); rossella.albrizio@ 123456cnr.it (R.A.)
                [2 ]Department of Agricultural Science, University of Napoli Federico II, Portici, 80055 Naples, Italy; almaggio@ 123456unina.it
                [3 ]Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops (CREA-OF), Pontecagnano, 84098 Salerno, Italy; martina.caramante@ 123456gmail.com (M.C.); accursio.venezia@ 123456crea.gov.it (A.V.)
                [4 ]National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Research Division Portici, 80055 Naples, Italy; grillo@ 123456unina.it
                Author notes
                Author information
                https://orcid.org/0000-0002-6528-0774
                https://orcid.org/0000-0002-2682-4521
                Article
                plants-09-00795
                10.3390/plants9060795
                7356216
                32630481
                13e2b0be-1d24-49f0-ba7a-3f8766b65ef7
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 March 2020
                : 22 June 2020
                Categories
                Article

                chloride,sodium,photosynthesis,landraces,yield
                chloride, sodium, photosynthesis, landraces, yield

                Comments

                Comment on this article