Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Area laws for the entanglement entropy - a review

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Physical interactions in quantum many-body systems are typically local: Individual constituents interact mainly with their few nearest neighbors. This locality of interactions is inherited by a decay of correlation functions, but also reflected by scaling laws of a quite profound quantity: The entanglement entropy of ground states. This entropy of the reduced state of a subregion often merely grows like the boundary area of the subregion, and not like its volume, in sharp contrast with an expected extensive behavior. Such "area laws" for the entanglement entropy and related quantities have received considerable attention in recent years. They emerge in several seemingly unrelated fields, in the context of black hole physics, quantum information science, and quantum many-body physics where they have important implications on the numerical simulation of lattice models. In this Colloquium we review the current status of area laws in these fields. Center stage is taken by rigorous results on lattice models in one and higher spatial dimensions. The differences and similarities between bosonic and fermionic models are stressed, area laws are related to the velocity of information propagation, and disordered systems, non-equilibrium situations, classical correlation concepts, and topological entanglement entropies are discussed. A significant proportion of the article is devoted to the quantitative connection between the entanglement content of states and the possibility of their efficient numerical simulation. We discuss matrix-product states, higher-dimensional analogues, and states from entanglement renormalization and conclude by highlighting the implications of area laws on quantifying the effective degrees of freedom that need to be considered in simulations.

      Related collections

      Most cited references 28

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Many-Body Physics with Ultracold Gases

      This article reviews recent experimental and theoretical progress on many-body phenomena in dilute, ultracold gases. Its focus are effects beyond standard weak-coupling descriptions, like the Mott-Hubbard-transition in optical lattices, strongly interacting gases in one and two dimensions or lowest Landau level physics in quasi two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near Feshbach resonances in the BCS-BEC crossover.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: found
        Is Open Access

        Quantum entanglement

        All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.
          Bookmark
          • Record: found
          • Abstract: not found
          • Article: not found

          Density matrix formulation for quantum renormalization groups

            Bookmark

            Author and article information

            Journal
            28 August 2008
            2010-02-12
            0808.3773
            10.1103/RevModPhys.82.277

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            Custom metadata
            Rev. Mod. Phys. 82, 277 (2010)
            28 pages, 2 figures, final version
            quant-ph cond-mat.other hep-th math-ph math.MP

            Comments

            Comment on this article