16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prognostic impact of CD73 and A2A adenosine receptor expression in non-small-cell lung cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In immune cells, CD73 dephosphorylates and converts extracellular AMP into adenosine, which binds the A2A adenosine receptor (A2AR). Blockade of this interaction, which induces an immunosuppressed niche in the tumor microenvironment, represents a potential novel treatment strategy. The clinical significance of CD73 and A2AR expression in non-small-cell lung cancer (NSCLC), however, has yet to be thoroughly investigated. Here we evaluated CD73 and A2AR protein expression levels using immunohistochemistry in tissue microarrays containing 642 resected NSCLC specimens. Furthermore, we compared the expression profiles of 133 paired primary tumors and lymph node metastases. CD73 and A2AR expression levels were significantly higher in females than in males, in never smokers than in ever smokers, and in adenocarcinomas than in squamous cell carcinomas. Among adenocarcinomas, significantly higher CD73 and A2AR expression was observed in TTF-1-positive and mutant EGFR-positive tumors than in their counterparts. Compared with CD73, A2AR expression was more inconsistent between primary tumors and lymph node metastases. Among NSCLC patients, high CD73 expression was an independent indicator of poor prognosis in multivariate Cox regression analyses for overall survival [hazard ratio (HR), 2.18; 95% confidence interval (CI), 1.38–3.46] and recurrence-free survival (HR, 2.05; 95% CI, 1.42–2.95). In contrast, high A2AR expression was an independent predictor of favorable prognosis for overall survival (HR, 0.70; 95% CI, 0.50–0.98) and recurrence-free survival (HR, 0.74; 95% CI, 0.56–0.97). Together, these findings indicate that CD73 and A2AR have opposing prognostic effects, although cases involving CD73 or A2AR expression share some clinicopathological features.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          A2A adenosine receptor protects tumors from antitumor T cells.

          The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in approximately 60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia-->adenosine-->A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia-->adenosine-->A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis.

            Extracellular adenosine is a potent immunosuppressor that accumulates during tumor growth. We performed proof-of-concept studies investigating the therapeutic potential and mechanism of action of monoclonal antibody (mAb)-based therapy against CD73, an ecto-enzyme overexpressed on breast-cancer cells that catalyzes the dephosphorylation of adenosine monophosphates into adenosine. We showed that anti-CD73 mAb therapy significantly delayed primary 4T1.2 and E0771 tumor growth in immune-competent mice and significantly inhibited the development of spontaneous 4T1.2 lung metastases. Notably, anti-CD73 mAb therapy was essentially dependent on the induction of adaptive anti-tumor immune responses. Knockdown of CD73 in 4T1.2 tumor cells confirmed the tumor-promoting effects of CD73. In addition to its immunosuppressive effect, CD73 enhanced tumor-cell chemotaxis, suggesting a role for CD73-derived adenosine in tumor metastasis. Accordingly, administration of adenosine-5'-N-ethylcarboxamide to tumor-bearing mice significantly enhanced spontaneous 4T1.2 lung metastasis. Using selective adenosine-receptor antagonists, we showed that activation of A2B adenosine receptors promoted 4T1.2 tumor-cell chemotaxis in vitro and metastasis in vivo. In conclusion, our study identified tumor-derived CD73 as a mechanism of tumor immune escape and tumor metastasis, and it also established the proof of concept that targeted therapy against CD73 can trigger adaptive anti-tumor immunity and inhibit metastasis of breast cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.

              Monoclonal antibodies (mAb) that block programmed death (PD)-1 or cytotoxic T lymphocyte antigen (CTLA-4) receptors have been associated with durable clinical responses against a variety of cancer types and hold great potential as novel cancer therapeutics. Recent evidence suggest that targeted blockade of multiple immunosuppressive pathways can induce synergistic antitumor responses. In this study, we investigated whether targeted blockade of CD73, an ectonucleotidase that catabolizes the hydrolysis of extracellular adenosine monophosphate (AMP) to adenosine, can enhance the antitumor activity of anti-CTLA-4 and anti-PD-1 mAbs against transplanted and chemically induced mouse tumors. Anti-CD73 mAb significantly enhanced the activity of both anti-CTLA-4 and anti-PD-1 mAbs against MC38-OVA (colon) and RM-1 (prostate) subcutaneous tumors, and established metastatic 4T1.2 breast cancer. Anti-CD73 mAb also significantly enhanced the activity of anti-PD-1 mAb against 3-methylcholanthrene (MCA)-induced fibrosarcomas. Gene-targeted mice revealed that single-agent therapies and combinatorial treatments were dependent on host IFN-γ and CD8(+) T cells, but independent of perforin. Interestingly, anti-CD73 mAb preferentially synergized with anti-PD-1 mAb. We investigated the effect of extracellular adenosine on tumor-infiltrating T cells and showed that activation of A2A adenosine receptor enhances PD-1 expression, but not CTLA-4 expression, on tumor-specific CD8+ T cells and CD4+ Foxp3+ T regulatory cells. Taken together, our study revealed that targeted blockade of CD73 can enhance the therapeutic activity of anti-PD-1 and anti-CTLA-4 mAbs and may thus potentiate therapeutic strategies targeting immune checkpoint inhibitors in general. ©2013 AACR.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                31 January 2017
                2 January 2017
                : 8
                : 5
                : 8738-8751
                Affiliations
                1 Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
                2 Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
                3 First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
                4 Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
                5 Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
                6 Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
                Author notes
                Correspondence to: Haruhiko Sugimura, hsugimur@ 123456hama-med.ac.jp
                Article
                14434
                10.18632/oncotarget.14434
                5352437
                28060732
                13edc2ef-ea59-4dbe-bac4-7514ea40908f
                Copyright: © 2017 Inoue et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 September 2016
                : 1 December 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                cd73,a2ar,adenosine,prognosis,non-small-cell lung cancer
                Oncology & Radiotherapy
                cd73, a2ar, adenosine, prognosis, non-small-cell lung cancer

                Comments

                Comment on this article