25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      D11-Mediated Inhibition of Protein Kinase CK2 Impairs HIF-1α-Mediated Signaling in Human Glioblastoma Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Compelling evidence indicates that protein kinase CK2 plays an important role in many steps of cancer initiation and progression, therefore, the development of effective and cell-permeable inhibitors targeting this kinase has become an important objective for the treatment of a variety of cancer types including glioblastoma. We have recently identified 1,3-dichloro-6-[( E)-((4-methoxyphenyl)imino)methyl]dibenzo(b,d)furan-2,7-diol (D11) as a potent and selective inhibitor of protein kinase CK2. In this study, we have further characterized this compound and demonstrated that it suppresses CK2 kinase activity by mixed type inhibition (K I 7.7 nM, K I′ 42 nM). Incubation of glioblastoma cells with D11 induces cell death and upon hypoxia the compound leads to HIF-1α destabilization. The analysis of differential mRNA expression related to human hypoxia signaling pathway revealed that D11-mediated inhibition of CK2 caused strong down-regulation of genes associated with the hypoxia response including ANGPTL4, CA9, IGFBP3, MMP9, SLC2A1 and VEGFA. Taken together, the results reported here support the notion that including D11 in future treatment regimens might turn out to be a promising strategy to target tumor hypoxia to overcome resistance to radio- and chemotherapy.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway.

          Hypoxia induces a group of physiologically important genes such as erythropoietin and vascular endothelial growth factor. These genes are transcriptionally up-regulated by hypoxia-inducible factor 1 (HIF-1), a global regulator that belongs to the basic helix-loop-helix PAS family. Although HIF-1 is a heterodimer composed of alpha and beta subunits, its activity is primarily determined by hypoxia-induced stabilization of HIF-1alpha, which is otherwise rapidly degraded in oxygenated cells. We report the identification of an oxygen-dependent degradation (ODD) domain within HIF-1alpha that controls its degradation by the ubiquitin-proteasome pathway. The ODD domain consists of approximately 200 amino acid residues, located in the central region of HIF-1alpha. Because portions of the domain independently confer degradation of HIF-1alpha, deletion of this entire region is required to give rise to a stable HIF-1alpha, capable of heterodimerization, DNA-binding, and transactivation in the absence of hypoxic signaling. Conversely, the ODD domain alone confers oxygen-dependent instability when fused to a stable protein, Gal4. Hence, the ODD domain plays a pivotal role for regulating HIF-1 activity and thereby may provide a means of controlling gene expression by changes in oxygen tension.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway.

            HIF-1 alpha is a normally labile proangiogenic transcription factor that is stabilized and activated in hypoxia. Although the von Hippel Lindau (VHL) gene product, the ubiquitin ligase responsible for regulating HIF-1 alpha protein levels, efficiently targets HIF-1 alpha for rapid proteasome-dependent degradation under normoxia, HIF-1 alpha is resistant to the destabilizing effects of VHL under hypoxia. HIF-1 alpha also associates with the molecular chaperone Hsp90. To examine the role of Hsp90 in HIF-1 alpha function, we used renal carcinoma cell (RCC) lines that lack functional VHL and express stable HIF-1 alpha protein under normoxia. Geldanamycin (GA), an Hsp90 antagonist, promoted efficient ubiquitination and proteasome-mediated degradation of HIF-1 alpha in RCC in both normoxia and hypoxia. Furthermore, HIF-1 alpha point mutations that block VHL association did not protect HIF-1 alpha from GA-induced destabilization. Hsp90 antagonists also inhibited HIF-1 alpha transcriptional activity and dramatically reduced both hypoxia-induced accumulation of VEGF mRNA and hypoxia-dependent angiogenic activity. These findings demonstrate that disruption of Hsp90 function 1) promotes HIF-1 alpha degradation via a novel, oxygen-independent E3 ubiquitin ligase and 2) diminishes HIF-1 alpha transcriptional activity. Existence of an Hsp90-dependent pathway for elimination of HIF-1 alpha predicts that Hsp90 antagonists may be hypoxic cell sensitizers and possess antiangiogenic activity in vivo, thus extending the utility of these drugs as therapeutic anticancer agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein kinase CK2 in health and disease: CK2: a key player in cancer biology.

              Elevated levels of protein kinase CK2 (formerly casein kinase 2 or II) have long been associated with increased cell growth and proliferation both in normal and cancer cells. The ability of CK2 to also act as a potent suppressor of apoptosis offers an important link to its involvement in cancer since deregulation of both cell proliferation and apoptosis are among the key features of cancer cell biology. Dysregulated CK2 may impact both of these processes in cancer cells. All cancers that have been examined show increased CK2 expression, which may also relate to prognosis. The extensive involvement of CK2 in cancer derives from its impact on diverse molecular pathways controlling cell proliferation and cell death. Downregulation of CK2 by various approaches results in induction of apoptosis in cultured cell and xenograft cancer models suggesting its potential as a therapeutic target.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                01 January 2017
                March 2017
                : 10
                : 1
                : 5
                Affiliations
                Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; sschaefer@ 123456bmb.sdu.dk (S.S.); thl@ 123456bmb.sdu.dk (T.H.S.); mettefischer@ 123456outlook.com (M.F.)
                Author notes
                [* ]Correspondence: bag@ 123456bmb.sdu.dk ; Tel.: +45-6550-2388; Fax: +45-6599-2640
                Article
                pharmaceuticals-10-00005
                10.3390/ph10010005
                5374409
                28045438
                13ef0a35-f481-44f2-86e6-01b65c213898
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 November 2016
                : 22 December 2016
                Categories
                Article

                ck2,d11,hif-1α,glioblastoma cells,gene expression profiling

                Comments

                Comment on this article