37
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflammatory responses in the initiation of lung repair and regeneration: their role in stimulating lung resident stem cells

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The lungs are the primary organs for respiration, the process by which carbon dioxide and oxygen are exchanged. The alveolus, which is the site of gas exchange in the lungs, consists of multiple cell types including alveolar epithelial cells, lung capillary endothelial cells and fibroblasts. Because of their complexity, lung parenchymal cells including epithelial lineage have been thought to have a lower rate of cellular turnover in adult lung. However, accumulating observations suggest that the turnover of parenchymal cells in adult lungs is essential for maintaining homeostasis during the steady state as well as for the repair and regeneration after lung injury. After lung injury by harmful pathogens, inflammation occurs to protect the host. Although excessive inflammation damages lung tissue, inflammatory cells are essential for regeneration because they remove harmful pathogens as well as debris derived from apoptotic and necrotic cells. In addition, subsets of inflammatory cells, especially phagocytic monocytes, produce cytokines and growth factors to resolve inflammation and promote tissue regeneration by stimulating tissue-resident stem cells. Recent advances in the biology of lung-resident stem cells, especially those addressing epithelial lineage, have revealed that there are several cellular populations capable of self-renewal that can differentiate into airway and/or alveolar epithelial cells. A part of these populations does not exist in the steady state but emerges after lung injury, suggesting that signals induced by inflammation may play an important role in initiating the proliferation and differentiation of lung stem or progenitor cells. Understanding the interaction between inflammatory responses and tissue-resident stem cells would help elucidate the pathogenesis of inflammatory lung diseases and promote the discovery of new therapeutic targets.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Basal cells as stem cells of the mouse trachea and human airway epithelium.

          The pseudostratified epithelium of the mouse trachea and human airways contains a population of basal cells expressing Trp-63 (p63) and cytokeratins 5 (Krt5) and Krt14. Using a KRT5-CreER(T2) transgenic mouse line for lineage tracing, we show that basal cells generate differentiated cells during postnatal growth and in the adult during both steady state and epithelial repair. We have fractionated mouse basal cells by FACS and identified 627 genes preferentially expressed in a basal subpopulation vs. non-BCs. Analysis reveals potential mechanisms regulating basal cells and allows comparison with other epithelial stem cells. To study basal cell behaviors, we describe a simple in vitro clonal sphere-forming assay in which mouse basal cells self-renew and generate luminal cells, including differentiated ciliated cells, in the absence of stroma. The transcriptional profile identified 2 cell-surface markers, ITGA6 and NGFR, which can be used in combination to purify human lung basal cells by FACS. Like those from the mouse trachea, human airway basal cells both self-renew and generate luminal daughters in the sphere-forming assay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of VEGF receptors causes lung cell apoptosis and emphysema.

            Pulmonary emphysema, a significant global health problem, is characterized by a loss of alveolar structures. Because VEGF is a trophic factor required for the survival of endothelial cells and is abundantly expressed in the lung, we hypothesized that chronic blockade of VEGF receptors could induce alveolar cell apoptosis and emphysema. Chronic treatment of rats with the VEGF receptor blocker SU5416 led to enlargement of the air spaces, indicative of emphysema. The VEGF receptor inhibitor SU5416 induced alveolar septal cell apoptosis but did not inhibit lung cell proliferation. Viewed by angiography, SU5416-treated rat lungs showed a pruning of the pulmonary arterial tree, although we observed no lung infiltration by inflammatory cells or fibrosis. SU5416 treatment led to a decrease in lung expression of VEGF receptor 2 (VEGFR-2), phosphorylated VEGFR-2, and Akt-1 in the complex with VEGFR-2. Treatment with the caspase inhibitor Z-Asp-CH(2)-DCB prevented SU5416-induced septal cell apoptosis and emphysema development. These findings suggest that VEGF receptor signaling is required for maintenance of the alveolar structures and, further, that alveolar septal cell apoptosis contributes to the pathogenesis of emphysema.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis.

              Ineffective repair of a damaged alveolar epithelium has been postulated to cause pulmonary fibrosis. In support of this theory, epithelial cell abnormalities, including hyperplasia, apoptosis, and persistent denudation of the alveolar basement membrane, are found in the lungs of humans with idiopathic pulmonary fibrosis and in animal models of fibrotic lung disease. Furthermore, mutations in genes that affect regenerative capacity or that cause injury/apoptosis of type II alveolar epithelial cells have been identified in familial forms of pulmonary fibrosis. Although these findings are compelling, there are no studies that demonstrate a direct role for the alveolar epithelium or, more specifically, type II cells in the scarring process. To determine if a targeted injury to type II cells would result in pulmonary fibrosis. A transgenic mouse was generated to express the human diphtheria toxin receptor on type II alveolar epithelial cells. Diphtheria toxin was administered to these animals to specifically target the type II epithelium for injury. Lung fibrosis was assessed by histology and hydroxyproline measurement. Transgenic mice treated with diphtheria toxin developed an approximately twofold increase in their lung hydroxyproline content on Days 21 and 28 after diphtheria toxin treatment. The fibrosis developed in conjunction with type II cell injury. Histological evaluation revealed diffuse collagen deposition with patchy areas of more confluent scarring and associated alveolar contraction. The development of lung fibrosis in the setting of type II cell injury in our model provides evidence for a causal link between the epithelial defects seen in idiopathic pulmonary fibrosis and the corresponding areas of scarring.
                Bookmark

                Author and article information

                Contributors
                yamitsu@med.tohoku.ac.jp
                nfujino@med.tohoku.ac.jp
                ichinose@rm.med.tohoku.ac.jp
                Journal
                Inflamm Regen
                Inflamm Regen
                Inflammation and Regeneration
                BioMed Central (London )
                1880-9693
                1880-8190
                12 September 2016
                12 September 2016
                2016
                : 36
                : 15
                Affiliations
                GRID grid.69566.3a, ISNI 0000000122486943, Department of Respiratory Medicine, Graduate School of Medicine, , Tohoku University, ; 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
                Article
                20
                10.1186/s41232-016-0020-7
                5725654
                29259688
                14034894-b941-463d-bff7-a311a6fc265e
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 June 2016
                : 10 June 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001691, Japan Society for the Promotion of Science;
                Award ID: 24591148 and 15K09206
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2016

                inflammation,tissue-resident stem cells,progenitor cells,m2 macrophage

                Comments

                Comment on this article