21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct electronic measurement of the spin Hall effect

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The generation, manipulation and detection of spin-polarized electrons in nanostructures define the main challenges of spin-based electronics[1]. Amongst the different approaches for spin generation and manipulation, spin-orbit coupling, which couples the spin of an electron to its momentum, is attracting considerable interest. In a spin-orbit-coupled system, a nonzero spin-current is predicted in a direction perpendicular to the applied electric field, giving rise to a "spin Hall effect"[2-4]. Consistent with this effect, electrically-induced spin polarization was recently detected by optical techniques at the edges of a semiconductor channel[5] and in two-dimensional electron gases in semiconductor heterostructures[6,7]. Here we report electrical measurements of the spin-Hall effect in a diffusive metallic conductor, using a ferromagnetic electrode in combination with a tunnel barrier to inject a spin-polarized current. In our devices, we observe an induced voltage that results exclusively from the conversion of the injected spin current into charge imbalance through the spin Hall effect. Such a voltage is proportional to the component of the injected spins that is perpendicular to the plane defined by the spin current direction and the voltage probes. These experiments reveal opportunities for efficient spin detection without the need for magnetic materials, which could lead to useful spintronics devices that integrate information processing and data storage.

          Related collections

          Author and article information

          Journal
          16 May 2006
          Article
          10.1038/nature04937
          cond-mat/0605423
          1405faf2-3a39-4129-8904-ad0cf51cd3a6
          History
          Custom metadata
          Nature 442, 176 (2006)
          5 pages, 4 figures. Accepted for publication in Nature (pending format approval)
          cond-mat.mes-hall

          Comments

          Comment on this article