148
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emphysema: time to say farewell to therapeutic nihilism

      editorial
      , ,
      Thorax
      BMJ Publishing Group
      Emphysema, Lung Volume Reduction Surgery, Bronchoscopy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is an interesting time for the management of emphysema. In this condition, destruction of lung parenchyma associated with reduced elastic recoil and dynamic airways closure produce gas trapping and increased operating lung volumes, leading to breathlessness and exercise limitation. It has historically been defined as an irreversible process, which has led to a degree of therapeutic nihilism. One manifestation of this has been the curious neglect of lung volume reduction surgery (LVRS). Clinical guidelines,1 reflecting trial evidence,2 recommend consideration of LVRS in selected patients with upper lobe predominant emphysema and poor exercise capacity, the phenotype where surgery has been shown to produce a survival benefit. Modern surgical techniques, unilateral treatment and improved postoperative care and patient selection mean that LVRS is also associated with lower morbidity and mortality than data published at the turn of the century had suggested,3 4 with one recent case series reporting zero 90-day mortality following unilateral surgery.5 Nevertheless, little effort seems to be going into identifying this patient population and LVRS remains vastly underused with just 90 procedures taking place in the UK in 2010–2011. A partial explanation for this may be found in a recent survey of British Thoracic Society members that revealed that a significant proportion overestimated the morbidity and mortality associated with LVRS.6 Only 30% had access to a dedicated chronic obstructive pulmonary disease (COPD) multidisciplinary meeting to review patients, and there was no consensus as to the correct strategy to adopt to identify appropriate patients. Over the last decade, bronchoscopic approaches for lung volume reduction in emphysema have proliferated. These include one-way endobronchial valves to induce lobar collapse,7–10 airway bypass approaches to create low-resistance extra-anatomical pathways that allow trapped gas to escape,11 12 lung volume reduction coils (LVRC) that re-tension the lung preventing dynamic airway collapse13 and techniques intended to reduce lung volumes by scarring either through bronchial thermal vapour ablation (‘steam’)14 or the use of biological agents.15 16 These approaches offer the potential to achieve lung volume reduction, improving symptoms and even prolonging survival8 while avoiding the problems inherent in an invasive surgical intervention. However, for each approach issues around the magnitude and duration of effect, optimum patient selection, safety profile and cost need to be addressed through properly conducted clinical trials with robust endpoints. Deslee and colleagues present 6-month and 12-month data from a multicentre, single-arm study of staged, bilateral LVRC treatment in patients with severe emphysema.17 They report improvements in St George's Respiratory Questionnaire (SGRQ) scores of −11.1±13.3 points 12 months following therapy as compared with baseline, with persistent benefits in 6 minute walking distance (6MWD), forced expiratory flow in the 1st second (FEV1) and residual volume (RV) exceeding accepted minimal clinically important differences. These data are encouraging and add to existing data from short-term controlled trials,13 but the limitations of this study merit some consideration when considering the general issues for bronchoscopic therapies outlined above. It was uncontrolled and unblinded, with only roughly half the cohort followed up beyond 6 months and the primary outcome was a quality of life score. This is questionable in a single-arm study without a sham procedure, given the powerful placebo effect seen with this sort of intervention. Nevertheless, the sustained improvement in lung volumes seems to indicate a persistent physiological effect. Longer-term follow-up in randomised controlled studies will be needed to be able to comment definitively on sustained benefits of LVRC. The RENEW trial (clinicaltrials.gov NCT01608490), which is currently underway with a primary endpoint of 6MWD 12 months post-recruitment will address this. The authors do not clarify what the distribution of recruitment among the 11 participating centres was or their prior experience with the technique. Two patients recruited for bilateral coil treatment were then thought to be unsuitable for contralateral treatment on a ‘second look’ at their imaging. In addition, the trial was meant to enrol only patients with heterogeneous disease, yet 13 and 17 of 33 patients reaching 12 months’ follow-up were deemed ‘homogeneous’ on visual and computerised scoring, respectively. The authors propose that homogeneous emphysema responds to treatment with LVRC to a similar extent to heterogeneous disease, but this must be considered hypothesis generating only and to some extent seems to reflect a failure in the application of the initial protocol. The problem of recruiting patients for lung volume reduction trials who on post hoc analysis do not fulfil entry criteria is not unique to this study.7 11 Safety is another key issue. It has been assumed that bronchoscopic lung volume reduction is safer and cheaper than LVRS. Pneumothorax occurred within 30 days in 4 of 155 procedures (3.5%), with a per patient rate of 11.7% (7/60) during the follow-up period. Pneumothorax following bronchoscopic lung volume reduction procedures can be delayed and can be fatal. This means that as well as formal safety criteria around lung function and exercise capacity a general clinical assessment of the patient's likely ability to cope with this complication needs to be made. In practice, relatively few people judged ‘too unwell for LVRS’ may be eligible for a bronchoscopic approach. All patients treated as part of this trial had general anaesthesia in an operating theatre, but it should be noted that these procedures can be performed safely in the bronchoscopy suite under sedation.13 A review article written a decade ago posed the question ‘Endobronchial lung volume reduction, a myth, or a marvel?’18 The proliferation of techniques and publications mean that these approaches can no longer be considered mythical, but nor any longer are they ‘a marvel’. Rather, they must be considered as techniques with a developing evidence base and varying response rates and complications where a case must be made that they represent good value, considered in terms of the resources employed and the health outcomes obtained. The London Respiratory Network has produced a value pyramid for COPD interventions19 (figure 1), but it remains to be established where each bronchoscopic approach will sit. LVRS was estimated as costing $40,000 per quality adjusted life year (QALY) based on the US National Emphysema Treatment Trial (NETT),20 but the likely true figure is considerably lower, given improvements in technique with reduced mortality, morbidity and length of stay.5 21 The cost of LVRCs is at present high with the list price of the devices themselves significantly exceeding the national LVRS tariff in the UK. Figure 1 The pyramid of value for COPD interventions developed by the London Respiratory Network with The London School of Economics (modified from19) gives estimates of cost per quality adjusted life year gained. LABA long-acting β2 agonist; QALY, quality adjusted life year. As with LVRS, the response rates for bronchoscopic techniques are crucially dependent on appropriate patient selection, with different criteria for different devices. This takes us back to the need to develop an multi-disciplinary team (MDT) approach for emphysema5 21 (table 1). Given trial data indicating improved survival, a failure to offer LVRS to appropriate patients with COPD and by extension a failure to make the effort to identify them seems to us to border on negligence. The development of a network of emphysema MDTs should also facilitate the more rapid delivery of trials to investigate the efficacy of experimental treatments and ensure that appropriate criteria are used to select individuals for more established interventions such as endobronchial valves to ensure a high responder rate and the best value for the healthcare system. Table 1 Approach to selecting patients with emphysema for a possible lung volume reduction procedure General criteria when considering a lung volume reduction procedure▸ Significantly reduced exercise capacity.▸ Lung function impairment with significant hyperinflation.▸ Sufficiently well to cope with surgery.▸ Prepared to accept some procedural risk (requires clinicians to be able to communicate this accurately).▸ There is a ‘window of opportunity’ for intervention. In ‘end-stage’ patients, it may be too late to intervene safely. Considerations Criteria ▸ Are they too well to consider intervention? ▸ Lung function, exercise capacity, prognosis, Medical Research Council dyspnoea score <3 ▸ Are they too unwell for intervention to be safe? ▸ Lung function, frailty, exercise capacity <100 m, oxygen dependence ▸ Is treatment optimal? ▸ Smoking cessation, pulmonary rehabilitation, flu vaccination, inhaled and oral medication ▸ Is their lung function likely to rule out a procedure on safety grounds? ▸ All three of FEV1, TLco and Kco <20% predicted ▸ Do they have comorbidities that limit likely benefit or increase risk? ▸ For example, pulmonary hypertension, unstable cardiac disease, malignancy, cerebrovascular disease. Ongoing smoking (possibility of intervention may help to promote quit attempts) ▸ Have they ever had a CT thorax and if so has it been reported in terms of emphysema pattern? ▸ Review existing CT's or obtain a CT if a potential candidate as above Review CT and lung function in multi-disciplinary teams including respiratory physician, radiologist, thoracic surgeonFurther investigations including echocardiogram, lung perfusion scan and a formal field exercise test (shuttle walk or 6 minute walk test) may be indicated.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          A randomized study of endobronchial valves for advanced emphysema.

          Endobronchial valves that allow air to escape from a pulmonary lobe but not enter it can induce a reduction in lobar volume that may thereby improve lung function and exercise tolerance in patients with pulmonary hyperinflation related to advanced emphysema. We compared the safety and efficacy of endobronchial-valve therapy in patients with heterogeneous emphysema versus standard medical care. Efficacy end points were percent changes in the forced expiratory volume in 1 second (FEV1) and the 6-minute walk test on intention-to-treat analysis. We assessed safety on the basis of the rate of a composite of six major complications. Of 321 enrolled patients, 220 were randomly assigned to receive endobronchial valves (EBV group) and 101 to receive standard medical care (control group). At 6 months, there was an increase of 4.3% in the FEV1 in the EBV group (an increase of 1.0 percentage point in the percent of the predicted value), as compared with a decrease of 2.5% in the control group (a decrease of 0.9 percentage point in the percent of the predicted value). Thus, there was a mean between-group difference of 6.8% in the FEV1 (P=0.005). Roughly similar between-group differences were observed for the 6-minute walk test. At 12 months, the rate of the complications composite was 10.3% in the EBV group versus 4.6% in the control group (P=0.17). At 90 days, in the EBV group, as compared with the control group, there were increased rates of exacerbation of chronic obstructive pulmonary disease (COPD) requiring hospitalization (7.9% vs. 1.1%, P=0.03) and hemoptysis (6.1% vs. 0%, P=0.01). The rate of pneumonia in the target lobe in the EBV group was 4.2% at 12 months. Greater radiographic evidence of emphysema heterogeneity and fissure completeness was associated with an enhanced response to treatment. Endobronchial-valve treatment for advanced heterogeneous emphysema induced modest improvements in lung function, exercise tolerance, and symptoms at the cost of more frequent exacerbations of COPD, pneumonia, and hemoptysis after implantation. (Funded by Pulmonx; ClinicalTrials.gov number, NCT00129584.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The National Emphysema Treatment Trial (NETT) Part II: Lessons learned about lung volume reduction surgery.

            Substantial information regarding the role of lung volume reduction surgery (LVRS) in severe emphysema emanates from the National Emphysema Treatment Trial (NETT). The NETT was not a crossover trial and therefore was able to examine the effects of optimal medical management and LVRS on short- and long-term survival,as well as lung function, exercise performance, and quality of life.The NETT generated multiple insights into the preoperative, perioperative,and postoperative management of patients undergoing thoracotomy; described pain control techniques that were safe and effective; and emphasized the need to address nonpulmonary issues to optimize surgical outcomes. After the NETT, newer investigation has focused on bronchoscopic endobronchial interventions and other techniques less invasive than LVRS to achieve lung reduction.In this review, we summarize what we currently know about the role of LVRS in the treatment of severe emphysema as a result of insights gained from the NETT and provide a brief review of the newer techniques of lung volume reduction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bronchoscopic lung-volume reduction with Exhale airway stents for emphysema (EASE trial): randomised, sham-controlled, multicentre trial.

              Airway bypass is a bronchoscopic lung-volume reduction procedure for emphysema whereby transbronchial passages into the lung are created to release trapped air, supported with paclitaxel-coated stents to ease the mechanics of breathing. The aim of the EASE (Exhale airway stents for emphysema) trial was to evaluate safety and efficacy of airway bypass in people with severe homogeneous emphysema. We undertook a randomised, double-blind, sham-controlled study in 38 specialist respiratory centres worldwide. We recruited 315 patients who had severe hyperinflation (ratio of residual volume [RV] to total lung capacity of ≥0·65). By computer using a random number generator, we randomly allocated participants (in a 2:1 ratio) to either airway bypass (n=208) or sham control (107). We divided investigators into team A (masked), who completed pre-procedure and post-procedure assessments, and team B (unmasked), who only did bronchoscopies without further interaction with patients. Participants were followed up for 12 months. The 6-month co-primary efficacy endpoint required 12% or greater improvement in forced vital capacity (FVC) and 1 point or greater decrease in the modified Medical Research Council dyspnoea score from baseline. The composite primary safety endpoint incorporated five severe adverse events. We did Bayesian analysis to show the posterior probability that airway bypass was superior to sham control (success threshold, 0·965). Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00391612. All recruited patients were included in the analysis. At 6 months, no difference between treatment arms was noted with respect to the co-primary efficacy endpoint (30 of 208 for airway bypass vs 12 of 107 for sham control; posterior probability 0·749, below the Bayesian success threshold of 0·965). The 6-month composite primary safety endpoint was 14·4% (30 of 208) for airway bypass versus 11·2% (12 of 107) for sham control (judged non-inferior, with a posterior probability of 1·00 [Bayesian success threshold >0·95]). Although our findings showed safety and transient improvements, no sustainable benefit was recorded with airway bypass in patients with severe homogeneous emphysema. Broncus Technologies. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Thorax
                Thorax
                thoraxjnl
                thorax
                Thorax
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                0040-6376
                1468-3296
                November 2014
                1 July 2014
                : 69
                : 11
                : 973-975
                Affiliations
                NIHR Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London , London, UK
                Author notes
                [Correspondence to ] Dr Nicholas Hopkinson, NIHR Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Royal Brompton Hospital, Fulham Rd, London SW3 6NP, UK; n.hopkinson@ 123456ic.ac.uk
                Author information
                http://orcid.org/0000-0003-3235-0454
                Article
                thoraxjnl-2014-205667
                10.1136/thoraxjnl-2014-205667
                4215288
                24985493
                1414d2a0-27ec-4f02-aee5-465df6aab9b5
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

                History
                : 2 June 2014
                : 4 June 2014
                Categories
                1506
                Editorial
                Custom metadata
                unlocked

                Surgery
                emphysema,lung volume reduction surgery,bronchoscopy
                Surgery
                emphysema, lung volume reduction surgery, bronchoscopy

                Comments

                Comment on this article