13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enhancement of Biological Reactions on Cell Surfaces via Macromolecular Crowding

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reaction of macromolecules such as enzymes and antibodies with cell surfaces is often an inefficient process, requiring large amounts of expensive reagent. Here we report a general method based on macromolecular crowding with a range of neutral polymers to enhance such reactions, using red blood cells (RBCs) as a model system. Rates of conversion of Type A and B red blood cells to universal O type by removal of antigenic carbohydrates with selective glycosidases are increased up to 400-fold in the presence of crowders. Similar enhancements are seen for antibody binding. We further explore the factors underlying these enhancements using confocal microscopy and fluorescent recovery after bleaching (FRAP) techniques with various fluorescent protein fusion partners. Increased cell-surface concentration due to volume exclusion, along with two-dimensionally confined diffusion of enzymes close to the cell surface, appear to be the major contributing factors.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Anomalous diffusion of proteins due to molecular crowding.

          We have studied the diffusion of tracer proteins in highly concentrated random-coil polymer and globular protein solutions imitating the crowded conditions encountered in cellular environments. Using fluorescence correlation spectroscopy, we measured the anomalous diffusion exponent alpha characterizing the dependence of the mean-square displacement of the tracer proteins on time, r(2)(t) approximately t(alpha). We observed that the diffusion of proteins in dextran solutions with concentrations up to 400 g/l is subdiffusive (alpha < 1) even at low obstacle concentration. The anomalous diffusion exponent alpha decreases continuously with increasing obstacle concentration and molecular weight, but does not depend on buffer ionic strength, and neither does it depend strongly on solution temperature. At very high random-coil polymer concentrations, alpha reaches a limit value of alpha(l) approximately 3/4, which we take to be the signature of a coupling between the motions of the tracer proteins and the segments of the dextran chains. A similar, although less pronounced, subdiffusive behavior is observed for the diffusion of streptavidin in concentrated globular protein solutions. These observations indicate that protein diffusion in the cell cytoplasm and nucleus should be anomalous as well, with consequences for measurements of solute diffusion coefficients in cells and for the modeling of cellular processes relying on diffusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion.

            The green fluorescent protein (GFP) was used as a noninvasive probe to quantify the rheological properties of cell cytoplasm. GFP mutant S65T was purified from recombinant bacteria for solution studies, and expressed in CHO cell cytoplasm. GFP-S65T was brightly fluorescent in solution (lambda ex 492 nm, lambda em 509 nm) with a lifetime of 2.9 ns and a rotational correlation time (tc) of 20 ns. Recovery of GFP fluorescence after photobleaching was complete with a half-time (t1/2) in aqueous saline of 30 +/- 2 ms (5-micron diameter spot), giving a diffusion coefficient of 8.7 x 10(-7) cm2/s. The t1/2 was proportional to solution viscosity and was dependent on spot diameter. In contrast to fluorescein. GFP photobleaching efficiency was not affected by solution O2 content, triplet state quenchers, singlet oxygen scavengers, and general radical quenchers. In solutions of higher viscosity, an additional, rapid GFP recovery process was detected and ascribed to reversible photobleaching. The t1/2 for reversible photobleaching was 1.5-5.5 ms (relative viscosity 5-250), was independent of spot diameter, and was unaffected by O2 or quenchers. In cell cytoplasm, time-resolved microfluorimetry indicated a GFP lifetime of 2.6 ns and a tc of 36 +/- 3 ns, giving a relative viscosity (cytoplasm versus water) of 1.5. Photobleaching recovery of GFP in cytoplasm was 82 +/- 2% complete with a t1/2 of 83 +/- 6 ms, giving a relative viscosity of 3.2. GFP translational diffusion increased 4.7-fold as cells swelled from a relative volume of 0.5 to 2. Taken together with measurements of GFP translation and rotation in aqueous dextran solutions, the data in cytoplasm support the view that the primary barrier to GFP diffusion is collisional interactions between GFP and macromolecular solutes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular crowding shapes gene expression in synthetic cellular nanosystems

              Summary The integration of synthetic and cell-free biology has made tremendous strides towards creating artificial cellular nanosystems using concepts from solution-based chemistry: only the concentrations of reacting species modulate gene expression rates. However, it is known that macromolecular crowding, a key feature of natural cells, can dramatically influence biochemical kinetics by volume exclusion effects that reduce diffusion rates and enhance binding rates of macromolecules. Here, we demonstrate that macromolecular crowding can increase the robustness of gene expression through integrating synthetic cellular components of biological circuits and artificial cellular nanosystems. In addition, we reveal how ubiquitous cellular modules, including genetic components, a negative feedback loop, and the size of crowding molecules, can fine tune gene circuit response to molecular crowding. By bridging a key gap between artificial and living cells, our work has implications for efficient and robust control of both synthetic and natural cellular circuits.
                Bookmark

                Author and article information

                Journal
                101528555
                37539
                Nat Commun
                Nat Commun
                Nature communications
                2041-1723
                3 August 2016
                20 August 2014
                2014
                09 August 2016
                : 5
                : 4683
                Affiliations
                [1 ]Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
                [2 ]Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
                [3 ]Department of Chemistry, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
                [4 ]Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
                [5 ]Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
                Author notes
                [* ]Corresponding authors: Dr. Stephen G Withers FRS Khorana Professor, Department of Chemistry and Biochemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., Canada V6T 1Z1, Tel 604 822 3402, withers@ 123456chem.ubc.ca . Or Dr. Jayachandran N Kizhakkedathu, Department of Pathology and Lab Medicine, Center for Blood Research, Department of Chemistry, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC, CANADA V6T 1Z3, Phone: 604-822-7085, Fax: 604-822-7742, jay@ 123456pathology.ubc.ca
                Article
                CAMS4560
                10.1038/ncomms5683
                4978540
                25140641
                141f60ef-1ec5-49ec-837e-68a7639a19c9

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article