3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Sirt3-autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to examine the role of sirtuin 3 (Sirt3)-autophagy in regulating myocardial energy metabolism and inhibiting myocardial hypertrophy in angiotensin (Ang) II-induced myocardial cell hypertrophy. The primary cultured myocardial cells of neonatal Sprague Dawley rats were used to construct a myocardial hypertrophy model induced with Ang II. Following the activation of Sirt3 by resveratrol (Res), Sirt3 was silenced using small interfering (si)RNA-Sirt3, and the morphology of the myocardial cells was observed under an optical microscope. Reverse transcription-polymerase chain reaction was used to detect the mRNA expression of the following myocardial hypertrophy markers; atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), Sirt3, medium-chain acyl-CoA dehydrogenase (MCAD) and pyruvate kinase (PK). Western blot analysis was used to detect the protein expression of Sirt3, light chain 3 (LC3) and Beclin1. Ang II may inhibit the protein expression of Sirt3, LC3 and Beclin1. Res, an agonist of Sirt3, may promote the protein expression of Sirt3, LC3 and Beclin1. Res inhibited the mRNA expression of ANP and BNP, and reversed the Ang II-induced myocardial cell hypertrophy. The addition of siRNA-Sirt3 decreased the protein expression of Sirt3, LC3 and Beclin1, increased the mRNA expression of ANP and BNP, and weakened the inhibitory effect of Res on myocardial cell hypertrophy. Res promoted the mRNA expression of MCAD, inhibited the mRNA expression of PK, and reversed the influence of Ang II on myocardial energy metabolism. siRNA-Sirt3 intervention significantly decreased the effect of Res in eliminating abnormal myocardial energy metabolism. In conclusion, Sirt3 may inhibit Ang II-induced myocardial hypertrophy and reverse the Ang II-caused abnormal myocardial energy metabolism through activation of autophagy.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The Sir2 family of protein deacetylases.

          The yeast SIR protein complex has been implicated in transcription silencing and suppression of recombination. The Sir complex represses transcription at telomeres, mating-type loci, and ribosomal DNA. Unlike SIR3 and SIR4, the SIR2 gene is highly conserved in organisms ranging from archaea to humans. Interestingly, Sir2 is active as an NAD+-dependent deacetylase, which is broadly conserved from bacteria to higher eukaryotes. In this review, we discuss the role of NAD+, the unusual products of the deacetylation reaction, the Sir2 structure, and the Sir2 chemical inhibitors and activators that were recently identified. We summarize the current knowledge of the Sir2 homologs from different organisms, and finally we discuss the role of Sir2 in caloric restriction and aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiac autophagy is a maladaptive response to hemodynamic stress.

            Cardiac hypertrophy is a major predictor of heart failure and a prevalent disorder with high mortality. Little is known, however, regarding mechanisms governing the transition from stable cardiac hypertrophy to decompensated heart failure. Here, we tested the role of autophagy, a conserved pathway mediating bulk degradation of long-lived proteins and cellular organelles that can lead to cell death. To quantify autophagic activity, we engineered a line of "autophagy reporter" mice and confirmed that cardiomyocyte autophagy can be induced by short-term nutrient deprivation in vivo. Pressure overload induced by aortic banding induced heart failure and greatly increased cardiac autophagy. Load-induced autophagic activity peaked at 48 hours and remained significantly elevated for at least 3 weeks. In addition, autophagic activity was not spatially homogeneous but rather was seen at particularly high levels in basal septum. Heterozygous disruption of the gene coding for Beclin 1, a protein required for early autophagosome formation, decreased cardiomyocyte autophagy and diminished pathological remodeling induced by severe pressure stress. Conversely, Beclin 1 overexpression heightened autophagic activity and accentuated pathological remodeling. Taken together, these findings implicate autophagy in the pathogenesis of load-induced heart failure and suggest it may be a target for novel therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production.

              The mitochondrial sirtuin SIRT3 regulates metabolic homeostasis during fasting and calorie restriction. We identified mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 (HMGCS2) as an acetylated protein and a possible target of SIRT3 in a proteomics survey in hepatic mitochondria from Sirt3(-/-) (SIRT3KO) mice. HMGCS2 is the rate-limiting step in β-hydroxybutyrate synthesis and is hyperacetylated at lysines 310, 447, and 473 in the absence of SIRT3. HMGCS2 is deacetylated by SIRT3 in response to fasting in wild-type mice, but not in SIRT3KO mice. HMGCS2 is deacetylated in vitro when incubated with SIRT3 and in vivo by overexpression of SIRT3. Deacetylation of HMGCS2 lysines 310, 447, and 473 by incubation with wild-type SIRT3 or by mutation to arginine enhances its enzymatic activity. Molecular dynamics simulations show that in silico deacetylation of these three lysines causes conformational changes of HMGCS2 near the active site. Mice lacking SIRT3 show decreased β-hydroxybutyrate levels during fasting. Our findings show SIRT3 regulates ketone body production during fasting and provide molecular insight into how protein acetylation can regulate enzymatic activity. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                August 2020
                28 May 2020
                28 May 2020
                : 22
                : 2
                : 1342-1350
                Affiliations
                The First Affiliated Hospital of Shantou University Medical College Cardiac Care Unit, Shantou, Guangdong 515041, P.R. China
                Author notes
                Correspondence to: Dr Hai-Ning Wang, The First Affiliated Hospital of Shantou University Medical College Cardiac Care Unit, 57 Changping Road, Shantou, Guangdong 515041, P. R. China, E-mail: wanghnvip@ 123456163.com
                Article
                MMR-22-02-1342
                10.3892/mmr.2020.11195
                7339626
                32468001
                142f867e-ddc3-46ff-a460-5f5aee8acb3c
                Copyright: © Wang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 09 May 2017
                : 10 August 2018
                Categories
                Articles

                resveratrol,myocardiocytes,myocardial hypertrophy,sirtuin 3,autophagy,angiotensin ii

                Comments

                Comment on this article