60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential expression of microRNAs in mouse pain models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          MicroRNAs (miRNAs) are short non-coding RNAs that inhibit translation of target genes by binding to their mRNAs. The expression of numerous brain-specific miRNAs with a high degree of temporal and spatial specificity suggests that miRNAs play an important role in gene regulation in health and disease. Here we investigate the time course gene expression profile of miR-1, -16, and -206 in mouse dorsal root ganglion (DRG), and spinal cord dorsal horn under inflammatory and neuropathic pain conditions as well as following acute noxious stimulation.

          Results

          Quantitative real-time polymerase chain reaction analyses showed that the mature form of miR-1, -16 and -206, is expressed in DRG and the dorsal horn of the spinal cord. Moreover, CFA-induced inflammation significantly reduced miRs-1 and -16 expression in DRG whereas miR-206 was downregulated in a time dependent manner. Conversely, in the spinal dorsal horn all three miRNAs monitored were upregulated. After sciatic nerve partial ligation, miR-1 and -206 were downregulated in DRG with no change in the spinal dorsal horn. On the other hand, axotomy increases the relative expression of miR-1, -16, and 206 in a time-dependent fashion while in the dorsal horn there was a significant downregulation of miR-1. Acute noxious stimulation with capsaicin also increased the expression of miR-1 and -16 in DRG cells but, on the other hand, in the spinal dorsal horn only a high dose of capsaicin was able to downregulate miR-206 expression.

          Conclusions

          Our results indicate that miRNAs may participate in the regulatory mechanisms of genes associated with the pathophysiology of chronic pain as well as the nociceptive processing following acute noxious stimulation. We found substantial evidence that miRNAs are differentially regulated in DRG and the dorsal horn of the spinal cord under different pain states. Therefore, miRNA expression in the nociceptive system shows not only temporal and spatial specificity but is also stimulus-dependent.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of mammalian microRNA targets.

          MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ethical guidelines for investigations of experimental pain in conscious animals.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA biogenesis: coordinated cropping and dicing.

              V Kim (2005)
              The recent discovery of microRNAs (miRNAs) took many by surprise because of their unorthodox features and widespread functions. These tiny, approximately 22-nucleotide, RNAs control several pathways including developmental timing, haematopoiesis, organogenesis, apoptosis, cell proliferation and possibly even tumorigenesis. Among the most pressing questions regarding this unusual class of regulatory miRNA-encoding genes is how miRNAs are produced in cells and how the genes themselves are controlled by various regulatory networks.
                Bookmark

                Author and article information

                Journal
                Mol Pain
                Molecular Pain
                BioMed Central
                1744-8069
                2011
                7 March 2011
                : 7
                : 17
                Affiliations
                [1 ]Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
                [2 ]Department of Neurology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
                [3 ]Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
                Article
                1744-8069-7-17
                10.1186/1744-8069-7-17
                3060138
                21385380
                144a21a5-499d-42b6-bf89-dcbc9e11cf34
                Copyright ©2011 Kusuda et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 August 2010
                : 7 March 2011
                Categories
                Research

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article