11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the mosquito, the midgut epithelium is the initial tissue to become infected with an arthropod-borne virus (arbovirus) that has been acquired from a vertebrate host along with a viremic bloodmeal. Following its replication in midgut epithelial cells, the virus needs to exit the midgut and infect secondary tissues including the salivary glands before it can be transmitted to another vertebrate host. The viral exit mechanism from the midgut, the midgut escape barrier (MEB), is poorly understood although it is an important determinant of mosquito vector competence for arboviruses. Using chikungunya virus (CHIKV) as a model in Aedes aegypti, we demonstrate that the basal lamina (BL) of the extracellular matrix (ECM) surrounding the midgut constitutes a potential barrier for the virus. The BL, predominantly consisting of collagen IV and laminin, becomes permissive during bloodmeal digestion in the midgut lumen. Bloodmeal digestion, BL permissiveness, and CHIKV dissemination are coincident with increased collagenase activity, diminished collagen IV abundance, and BL shredding in the midgut between 24–32 h post-bloodmeal. This indicates that there may be a window-of-opportunity during which the MEB in Ae. aegypti becomes permissive for CHIKV. Matrix metalloproteinases (MMPs) are the principal extracellular endopeptidases responsible for the degradation/remodeling of the ECM including the BL. We focused on Ae. aegypti (Ae)MMP1, which is expressed in midgut epithelial cells, is inducible upon bloodfeeding, and shows collagenase (gelatinase) activity. However, attempts to inhibit AeMMP activity in general or specifically that of AeMMP1 did not seem to affect its function nor produce an altered midgut escape phenotype. As an alternative, we silenced and overexpressed the Ae. aegypti tissue inhibitor of metallo proteinases (AeTIMP) in the mosquito midgut. AeTIMP was highly upregulated in the midgut during bloodmeal digestion and was able to inhibit MMP activity in vitro. Bloodmeal-inducible, midgut-specific overexpression of AeTIMP or its expression via a recombinant CHIKV significantly increased midgut dissemination rates of the virus. Possibly, AeTIMP overexpression affected BL degradation and/or restoration thereby increasing the midgut dissemination efficiency of the virus.

          Author summary

          The biological nature of the midgut escape barrier in insects for arthropod-borne viruses has been a mystery for decades. Here we show that the basal lamina (BL) surrounding the mosquito midgut acts as a barrier for chikungunya virus, an alphavirus, which has emerged in the New World hemisphere around three years ago. The barrier became permissive for the virus during digestion of a viremic bloodmeal inside the midgut lumen. Concurrent with BL permissiveness, we observed that collagen IV, a major component of the BL became temporally degraded while the BL was visibly damaged. Based on previous findings, we hypothesized that matrix metalloproteinases such as Ae. aegypti (Ae)MMP1 may be involved in BL degradation. We confirmed that recombinant AeMMP1 exhibited strong gelatinase activity, which was profoundly reduced when recombinant AeMMP1 interacted in vitro with the recombinant Ae. aegypti tissue inhibitor of metalloproteinases (AeTIMP). When transgenically overexpressing AeTIMP in an attempt to temporally inhibit general MMP activity in the mosquito midgut, we observed that the dissemination efficiency of chikungunya virus became significantly increased, while its midgut infection was not affected. It is possible that AeTIMP overexpression affected BL degradation/restoration permitting increased quantities of virus to escape from the midgut.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development.

          Basement membranes are specialized extracellular matrices consisting of tissue-specific organizations of multiple matrix molecules and serve as structural barriers as well as substrates for cellular interactions. The network of collagen IV is thought to define the scaffold integrating other components such as, laminins, nidogens or perlecan, into highly organized supramolecular architectures. To analyze the functional roles of the major collagen IV isoform alpha1(IV)(2)alpha2(IV) for basement membrane assembly and embryonic development, we generated a null allele of the Col4a1/2 locus in mice, thereby ablating both alpha-chains. Unexpectedly, embryos developed up to E9.5 at the expected Mendelian ratio and showed a variable degree of growth retardation. Basement membrane proteins were deposited and assembled at expected sites in mutant embryos, indicating that this isoform is dispensable for matrix deposition and assembly during early development. However, lethality occurred between E10.5-E11.5, because of structural deficiencies in the basement membranes and finally by failure of the integrity of Reichert's membrane. These data demonstrate for the first time that collagen IV is fundamental for the maintenance of integrity and function of basement membranes under conditions of increasing mechanical demands, but dispensable for deposition and initial assembly of components. Taken together with other basement membrane protein knockouts, these data suggest that laminin is sufficient for basement membrane-like matrices during early development, but at later stages the specific composition of components including collagen IV defines integrity, stability and functionality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes

            Background To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. Results After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Conclusion Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Laminins in basement membrane assembly

              The heterotrimeric laminins are a defining component of all basement membranes and self-assemble into a cell-associated network. The three short arms of the cross-shaped laminin molecule form the network nodes, with a strict requirement for one α, one β and one γ arm. The globular domain at the end of the long arm binds to cellular receptors, including integrins, α-dystroglycan, heparan sulfates and sulfated glycolipids. Collateral anchorage of the laminin network is provided by the proteoglycans perlecan and agrin. A second network is then formed by type IV collagen, which interacts with the laminin network through the heparan sulfate chains of perlecan and agrin and additional linkage by nidogen. This maturation of basement membranes becomes essential at later stages of embryo development.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draft
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: Visualization
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: Visualization
                Role: InvestigationRole: Methodology
                Role: InvestigationRole: MethodologyRole: Visualization
                Role: InvestigationRole: Methodology
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                29 September 2017
                September 2017
                : 11
                : 9
                : e0005976
                Affiliations
                [1 ] Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
                [2 ] Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri, United States of America
                Centers for Disease Control and Prevention, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-3243-8408
                Article
                PNTD-D-16-02310
                10.1371/journal.pntd.0005976
                5636170
                28961239
                1454fd80-0259-46be-87f2-7f764746043a
                © 2017 Dong et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 December 2016
                : 19 September 2017
                Page count
                Figures: 7, Tables: 0, Pages: 26
                Funding
                Funded by: National Institutes of Health - National Institute of Allergy and Infectious Diseases (NIH-NIAID)
                Award ID: R01AI091972
                Award Recipient :
                Funded by: NIH-NIAID
                Award ID: R21AI112782
                Award Recipient :
                This work has been funded by US National Institutes of Health (National Institute of Allergy and Infectious Diseases) grants no. R01AI091972 and R21AI112782. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Infectious Diseases
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Species Interactions
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Biology and Life Sciences
                Biochemistry
                Proteins
                Collagens
                Medicine and Health Sciences
                Tropical Diseases
                Neglected Tropical Diseases
                Chikungunya Infection
                Medicine and Health Sciences
                Infectious Diseases
                Viral Diseases
                Chikungunya Infection
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Hydrolases
                Collagenases
                Biology and Life Sciences
                Biochemistry
                Proteins
                Enzymes
                Hydrolases
                Collagenases
                Biology and Life Sciences
                Physiology
                Physiological Processes
                Digestion
                Medicine and Health Sciences
                Physiology
                Physiological Processes
                Digestion
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Structure
                Virions
                Custom metadata
                vor-update-to-uncorrected-proof
                2017-10-11
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article