5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of urbanisation on community structure, gene abundance and transcription rates of microbes in upland swamps of Eastern Australia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Temperate Highland Peat Swamps on Sandstone of the Sydney Basin occur in the headwaters of Sydney’s drinking water catchments and are listed as endangered ecosystems, yet they have suffered habitat losses and degradation due to human impacts such as urbanisation. Despite ongoing efforts to restore and better protect upland swamps, they remain poorly understood, potentially hindering the effectiveness of management efforts. Essential to overall ecosystem function and the provision of services for human and environmental benefit are the microbial component of wetland ecosystems. In the case of these swamps, the microbes, have not yet been studied. Here, we investigated differences in the microbial community of upland swamps in urbanised catchments compared to swamps from natural catchments in the Blue Mountains. A total of twelve swamps were sampled, six from within urbanised catchments and six with intact vegetation catchments, to compare sediment conditions and microbial community and genes expression and abundances. Catchment impervious area and number of stormwater drains entering a swamp, indicators for urbanisation, positively correlated with the pH and ammonium concentration of swamp sediment. Community analysis of the 16S rRNA gene (T-RFLP, qPCR) revealed the elevated pH of urbanised swamps coincided with changes to the abundance of bacteria and archaea. Furthermore, RT-qPCR revealed genes involved in carbon cycling ( mcrA & pmoA) were more likely to be found in urbanised swamps. Taken together, our results indicate that urbanisation of the Blue Mountains is impacting the environmental services provided by the microbial community of upland swamps in the Sydney Basin.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          The diversity and biogeography of soil bacterial communities.

          For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soil samples from across North and South America and used a ribosomal DNA-fingerprinting method to compare bacterial community composition and diversity quantitatively across sites. Bacterial diversity was unrelated to site temperature, latitude, and other variables that typically predict plant and animal diversity, and community composition was largely independent of geographic distance. The diversity and richness of soil bacterial communities differed by ecosystem type, and these differences could largely be explained by soil pH (r(2) = 0.70 and r(2) = 0.58, respectively; P < 0.0001 in both cases). Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in our study. Our results suggest that microbial biogeography is controlled primarily by edaphic variables and differs fundamentally from the biogeography of "macro" organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean.

            Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, occurs in a wide variety of environments and plays a central role in the global nitrogen cycle. Catalyzed by the enzyme ammonia monooxygenase, the ability to oxidize ammonia was previously thought to be restricted to a few groups within the beta- and gamma-Proteobacteria. However, recent metagenomic studies have revealed the existence of unique ammonia monooxygenase alpha-subunit (amoA) genes derived from uncultivated, nonextremophilic Crenarchaeota. Here, we report molecular evidence for the widespread presence of ammonia-oxidizing archaea (AOA) in marine water columns and sediments. Using PCR primers designed to specifically target archaeal amoA, we find AOA to be pervasive in areas of the ocean that are critical for the global nitrogen cycle, including the base of the euphotic zone, suboxic water columns, and estuarine and coastal sediments. Diverse and distinct AOA communities are associated with each of these habitats, with little overlap between water columns and sediments. Within marine sediments, most AOA sequences are unique to individual sampling locations, whereas a small number of sequences are evidently cosmopolitan in distribution. Considering the abundance of nonextremophilic archaea in the ocean, our results suggest that AOA may play a significant, but previously unrecognized, role in the global nitrogen cycle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction.

              Real-time polymerase chain reaction (PCR) is a highly sensitive method that can be used for the detection and quantification of microbial populations without cultivating them in anaerobic processes and environmental samples. This work was conducted to design primer and probe sets for the detection of methanogens using a real-time PCR with the TaqMan system. Six group-specific methanogenic primer and probe sets were designed. These sets separately detect four orders (Methanococcales, Methanobacteriales, Methanomicrobiales, and Methanosarcinales) along with two families (Methanosarcinaceae and Methanosaetaceae) of the order Methanosarcinales. We also designed the universal primer and probe sets that specifically detect the 16S rDNA of prokaryotes and of the domain Bacteria and Archaea, and which are fully compatible with the TaqMan real-time PCR system. Target-group specificity of each primer and probe set was empirically verified by testing DNA isolated from 28 archaeal cultures and by analyzing potential false results. In general, each primer and probe set was very specific to the target group. The primer and probe sets designed in this study can be used to detect and quantify the order-level (family-level in the case of Methanosarcinales) methanogenic groups in anaerobic biological processes and various environments.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: MethodologyRole: Writing – original draft
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: SupervisionRole: Writing – original draft
                Role: MethodologyRole: Writing – original draft
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: SupervisionRole: Writing – original draft
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                4 March 2019
                2019
                : 14
                : 3
                : e0213275
                Affiliations
                [1 ] Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
                [2 ] Department of Environmental Sciences, Macquarie University, North Ryde, NSW, Australia
                Assam University, INDIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                [¤]

                Current address: Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, British Columbia, Canada

                Author information
                http://orcid.org/0000-0001-5188-3067
                http://orcid.org/0000-0003-0541-3384
                Article
                PONE-D-18-23452
                10.1371/journal.pone.0213275
                6398846
                30830948
                14575797-79e7-4ddb-b5f5-637e94bb02bb
                © 2019 Christiansen et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 August 2018
                : 18 February 2019
                Page count
                Figures: 6, Tables: 6, Pages: 20
                Funding
                Funded by: Australian Research Council Linkage Grant
                Award ID: LP130100120
                Award Recipient :
                This project was supported by a an Australian Research Council grant (LP130100120) and a grant awarded under the Department of Sustainability, Environment, Water, Population and Communities (DSEWPaC) and Australian National University (ANU) Research Program on Temperate Highland Peat Swamps on Sandstone (THPSS) awarded to KF and GH. The THPSS Research Program was funded through an enforceable undertaking as per section 486A of the Environment Protection and Biodiversity Conservation Act 1999 between the Minister for the Environment, Springvale Coal Pty Ltd and Centennial Angus Place Pty Ltd. Further information on the enforceable undertaking and the terms of the THPSS Research Program can be found at www.environment.gov.au/news/2011/10/21/centennial-coal-fund-145-million-research-program.
                Categories
                Research Article
                Ecology and Environmental Sciences
                Aquatic Environments
                Freshwater Environments
                Swamps
                Earth Sciences
                Marine and Aquatic Sciences
                Aquatic Environments
                Freshwater Environments
                Swamps
                Earth Sciences
                Geology
                Petrology
                Sediment
                Earth Sciences
                Geology
                Sedimentary Geology
                Sediment
                Biology and Life Sciences
                Ecology
                Community Ecology
                Community Structure
                Ecology and Environmental Sciences
                Ecology
                Community Ecology
                Community Structure
                Biology and Life Sciences
                Organisms
                Archaea
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Ribosomal RNA
                Biology and life sciences
                Biochemistry
                Ribosomes
                Ribosomal RNA
                Biology and life sciences
                Cell biology
                Cellular structures and organelles
                Ribosomes
                Ribosomal RNA
                Biology and life sciences
                Genetics
                Gene expression
                DNA transcription
                Ecology and Environmental Sciences
                Aquatic Environments
                Freshwater Environments
                Wetlands
                Earth Sciences
                Marine and Aquatic Sciences
                Aquatic Environments
                Freshwater Environments
                Wetlands
                Earth Sciences
                Geomorphology
                Topography
                Landforms
                Wetlands
                Physical Sciences
                Physics
                Electricity
                Electric Conductivity
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article