5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Conservation genetics of the franciscana dolphin in Northern Argentina: population structure, by-catch impacts, and management implications

      , ,
      Conservation Genetics
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity.

            We review commonly used population definitions under both the ecological paradigm (which emphasizes demographic cohesion) and the evolutionary paradigm (which emphasizes reproductive cohesion) and find that none are truly operational. We suggest several quantitative criteria that might be used to determine when groups of individuals are different enough to be considered 'populations'. Units for these criteria are migration rate (m) for the ecological paradigm and migrants per generation (Nm) for the evolutionary paradigm. These criteria are then evaluated by applying analytical methods to simulated genetic data for a finite island model. Under the standard parameter set that includes L = 20 High mutation (microsatellite-like) loci and samples of S = 50 individuals from each of n = 4 subpopulations, power to detect departures from panmixia was very high ( approximately 100%; P < 0.001) even with high gene flow (Nm = 25). A new method, comparing the number of correct population assignments with the random expectation, performed as well as a multilocus contingency test and warrants further consideration. Use of Low mutation (allozyme-like) markers reduced power more than did halving S or L. Under the standard parameter set, power to detect restricted gene flow below a certain level X (H(0): Nm < X) can also be high, provided that true Nm < or = 0.5X. Developing the appropriate test criterion, however, requires assumptions about several key parameters that are difficult to estimate in most natural populations. Methods that cluster individuals without using a priori sampling information detected the true number of populations only under conditions of moderate or low gene flow (Nm < or = 5), and power dropped sharply with smaller samples of loci and individuals. A simple algorithm based on a multilocus contingency test of allele frequencies in pairs of samples has high power to detect the true number of populations even with Nm = 25 but requires more rigorous statistical evaluation. The ecological paradigm remains challenging for evaluations using genetic markers, because the transition from demographic dependence to independence occurs in a region of high migration where genetic methods have relatively little power. Some recent theoretical developments and continued advances in computational power provide hope that this situation may change in the future.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Bottleneck Effect and Genetic Variability in Populations

                Bookmark

                Author and article information

                Journal
                Conservation Genetics
                Conserv Genet
                Springer Nature
                1566-0621
                1572-9737
                April 2008
                July 2007
                : 9
                : 2
                : 419-435
                Article
                10.1007/s10592-007-9354-7
                145f761d-5a90-4852-9135-aa37355da97d
                © 2008
                History

                Comments

                Comment on this article