10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evolutionary Lineages and Functional Diversification of Plant Hexokinases

      , , , , ,
      Molecular Plant
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sequencing data from 10 species show that a plant hexokinase (HXK) family contains 5-11 genes. Functionally, a given family can include metabolic catalysts, glucose signaling proteins, and non-catalytic, apparent regulatory enzyme homologs. This study has two goals. The first aim is to develop a predictive method to determine which HXK proteins within a species have which type of function. The second aim is to determine whether HXK-dependent glucose signaling proteins occur among more primitive plants, as well as among angiosperms. Using a molecular phylogeny approach, combined with selective experimental testing, we found that non-catalytic HXK homologs might occur in all plants, including the relatively primitive Selaginella moellendorffi. We also found that different lineages of angiosperm HXKs have apparent conserved features for catalytic activity and for sub-cellular targeting. Most higher-plant HXKs are expressed predominantly at mitochondria, with HXKs of one lineage occurring in the plastid, and HXKs of one monocot lineage occurring in the cytosol. Using protoplast transient expression assays, we found that HXK glucose signaling proteins occur likely in all higher plants and in S. moellendorffi as well. Thus, the use of glucose by plant HXK isoforms in metabolism and/or as a regulatory metabolite occurs as widespread, conserved processes.

          Related collections

          Author and article information

          Journal
          Molecular Plant
          Molecular Plant
          Oxford University Press (OUP)
          16742052
          March 2010
          March 2010
          : 3
          : 2
          : 334-346
          Article
          10.1093/mp/ssq003
          20145006
          146d4277-a6fa-45ba-9f7b-ea3f09eaaba2
          © 2010

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://www.elsevier.com/open-access/userlicense/1.0/

          History

          Comments

          Comment on this article