101
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Encyclopedia of Life v2: Providing Global Access to Knowledge About Life on Earth

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          The Encyclopedia of Life (EOL, http://eol.org) aims to provide unprecedented global access to a broad range of information about life on Earth. It currently contains 3.5 million distinct pages for taxa and provides content for 1.3 million of those pages. The content is primarily contributed by EOL content partners (providers) that have a more limited geographic, taxonomic or topical scope. EOL aggregates these data and automatically integrates them based on associated scientific names and other classification information. EOL also provides interfaces for curation and direct content addition. All materials in EOL are either in the public domain or licensed under a Creative Commons license. In addition to the web interface, EOL is also accessible through an Application Programming Interface.

          In this paper, we review recent developments added for Version 2 of the web site and subsequent releases through Version 2.2, which have made EOL more engaging, personal, accessible and internationalizable. We outline the core features and technical architecture of the system. We summarize milestones achieved so far by EOL to present results of the current system implementation and establish benchmarks upon which to judge future improvements.

          We have shown that it is possible to successfully integrate large amounts of descriptive biodiversity data from diverse sources into a robust, standards-based, dynamic, and scalable infrastructure. Increasing global participation and the emergence of EOL-powered applications demonstrate that EOL is becoming a significant resource for anyone interested in biological diversity.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          The Measurement of Species Diversity

          R Peet (1974)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The taxonomic name resolution service: an online tool for automated standardization of plant names

            Background The digitization of biodiversity data is leading to the widespread application of taxon names that are superfluous, ambiguous or incorrect, resulting in mismatched records and inflated species numbers. The ultimate consequences of misspelled names and bad taxonomy are erroneous scientific conclusions and faulty policy decisions. The lack of tools for correcting this ‘names problem’ has become a fundamental obstacle to integrating disparate data sources and advancing the progress of biodiversity science. Results The TNRS, or Taxonomic Name Resolution Service, is an online application for automated and user-supervised standardization of plant scientific names. The TNRS builds upon and extends existing open-source applications for name parsing and fuzzy matching. Names are standardized against multiple reference taxonomies, including the Missouri Botanical Garden's Tropicos database. Capable of processing thousands of names in a single operation, the TNRS parses and corrects misspelled names and authorities, standardizes variant spellings, and converts nomenclatural synonyms to accepted names. Family names can be included to increase match accuracy and resolve many types of homonyms. Partial matching of higher taxa combined with extraction of annotations, accession numbers and morphospecies allows the TNRS to standardize taxonomy across a broad range of active and legacy datasets. Conclusions We show how the TNRS can resolve many forms of taxonomic semantic heterogeneity, correct spelling errors and eliminate spurious names. As a result, the TNRS can aid the integration of disparate biological datasets. Although the TNRS was developed to aid in standardizing plant names, its underlying algorithms and design can be extended to all organisms and nomenclatural codes. The TNRS is accessible via a web interface at http://tnrs.iplantcollaborative.org/ and as a RESTful web service and application programming interface. Source code is available at https://github.com/iPlantCollaborativeOpenSource/TNRS/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global Coordination and Standardisation in Marine Biodiversity through the World Register of Marine Species (WoRMS) and Related Databases

              The World Register of Marine Species is an over 90% complete open-access inventory of all marine species names. Here we illustrate the scale of the problems with species names, synonyms, and their classification, and describe how WoRMS publishes online quality assured information on marine species. Within WoRMS, over 100 global, 12 regional and 4 thematic species databases are integrated with a common taxonomy. Over 240 editors from 133 institutions and 31 countries manage the content. To avoid duplication of effort, content is exchanged with 10 external databases. At present WoRMS contains 460,000 taxonomic names (from Kingdom to subspecies), 368,000 species level combinations of which 215,000 are currently accepted marine species names, and 26,000 related but non-marine species. Associated information includes 150,000 literature sources, 20,000 images, and locations of 44,000 specimens. Usage has grown linearly since its launch in 2007, with about 600,000 unique visitors to the website in 2011, and at least 90 organisations from 12 countries using WoRMS for their data management. By providing easy access to expert-validated content, WoRMS improves quality control in the use of species names, with consequent benefits to taxonomy, ecology, conservation and marine biodiversity research and management. The service manages information on species names that would otherwise be overly costly for individuals, and thus minimises errors in the application of nomenclature standards. WoRMS' content is expanding to include host-parasite relationships, additional literature sources, locations of specimens, images, distribution range, ecological, and biological data. Species are being categorised as introduced (alien, invasive), of conservation importance, and on other attributes. These developments have a multiplier effect on its potential as a resource for biodiversity research and management. As a consequence of WoRMS, we are witnessing improved communication within the scientific community, and anticipate increased taxonomic efficiency and quality control in marine biodiversity research and management.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biodivers Data J
                Biodivers Data J
                Biodiversity Data Journal
                Biodiversity Data Journal
                Biodiversity Data Journal
                Pensoft Publishers
                1314-2836
                1314-2828
                2014
                29 April 2014
                : 2
                : e1079
                Affiliations
                []National Museum of Natural History, Smithsonian Institution, Washington DC, United States of America
                []Marine Biological Laboratory, Woods Hole, MA, United States of America
                [§ ]Smithsonian Institution, Washington, DC, United States of America
                [| ]Harvard University, Cambridge, MA, United States of America
                Author notes
                Corresponding author: Cynthia Parr ( parrc@ 123456si.edu ).

                Academic editor: Ed Baker.

                Article
                Biodiversity Data Journal 3253
                10.3897/BDJ.2.e1079
                4031434
                24891832
                1472d61c-7149-43b0-98df-1bd58ea84554
                Cynthia Parr, Nathan Wilson, Patrick Leary, Katja S. Schulz, Kristen Lans, Lisa Walley, Jennifer A. Hammock, Anthony Goddard, Jeremy Rice, Marie Studer, Jeffrey T. G. Holmes, Robert J. Corrigan, Jr.

                This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 March 2014
                : 24 April 2014
                Page count
                Figures: 12, Tables: 3, References: 50
                Categories
                Software Description
                Bacteria
                Fungi
                Plantae
                Animalia
                Protozoa
                Chromista
                Archaea
                Ecology
                Biogeography
                Evolutionary Biology
                Systematics
                Data Management
                World

                Comments

                Comment on this article