3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exposure of Larvae of the Solitary Bee Osmia bicornis to the Honey Bee Pathogen Nosema ceranae Affects Life History

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wild bees are important pollinators of wild plants and agricultural crops and they are threatened by several environmental stressors including emerging pathogens. Honey bees have been suggested as a potential source of pathogen spillover. One prevalent pathogen that has recently emerged as a honey bee disease is the microsporidian Nosema ceranae. While the impacts of N. ceranae in honey bees are well documented, virtually nothing is known about its effects in solitary wild bees. The solitary mason bee Osmia bicornis is a common pollinator in orchards and amenable to commercial management. Here, we experimentally exposed larvae of O. bicornis to food contaminated with N. ceranae and document spore presence during larval development. We measured mortality, growth parameters, and timing of pupation in a semi-field experiment. Hatched individuals were assessed for physiological state including fat body mass, wing muscle mass, and body size. We recorded higher mortality in the viable-spore-exposed group but could only detect a low number of spores among the individuals of this treatment. Viable-spore-treated individuals with higher head capsule width had a delayed pupation start. No impact on the physiological status could be detected in hatched imagines. Although we did not find overt evidence of O. bicornis infection, our findings indicate that exposure of larvae to viable N. ceranae spores could affect bee development.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology

          In the face of continuous threats from parasites, hosts have evolved an elaborate series of preventative and controlling measures - the immune system - in order to reduce the fitness costs of parasitism. However, these measures do have associated costs. Viewing an individual's immune response to parasites as being subject to optimization in the face of other demands offers potential insights into mechanisms of life history trade-offs, sexual selection, parasite-mediated selection and population dynamics. We discuss some recent results that have been obtained by practitioners of this approach in natural and semi-natural populations, and suggest some ways in which this field may progress in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?

            Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosema ceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Survival for immunity: the price of immune system activation for bumblebee workers.

              Parasites do not always harm their hosts because the immune system keeps an infection at bay. Ironically, the cost of using immune defenses could itself reduce host fitness. This indirect cost of parasitism is often not visible because of compensatory resource intake. Here, workers of the bumblebee, Bombus terrestris, were challenged with lipopolysaccharides and micro-latex beads to induce their immune system under starvation (i.e., not allowing compensatory intake). Compared with controls, survival of induced workers was significantly reduced (by 50 to 70%).
                Bookmark

                Author and article information

                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                31 October 2019
                November 2019
                : 10
                : 11
                : 380
                Affiliations
                [1 ]Institut für Biologie, Universität Berlin, 14195 Berlin, Germany; dino-peter.mcmahon@ 123456bam.de (D.P.M.);
                [2 ]Abteilung 4 Material und Umwelt, Bundesanstalt für Materialforschung und-prüfung (BAM), 12205 Berlin, Germany
                Author notes
                Author information
                https://orcid.org/0000-0003-1119-5299
                Article
                insects-10-00380
                10.3390/insects10110380
                6921066
                31683739
                1473336b-b6f3-423d-9c92-44abf6e2360b
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 September 2019
                : 28 October 2019
                Categories
                Article

                wild bees,nosema ceranae,osmia bicornis,pathogen transmission,solitary bees,bee health,bee diseases

                Comments

                Comment on this article