26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-Resolution Imaging of the ML 2.9 August 2019 Earthquake in Lancashire, United Kingdom, Induced by Hydraulic Fracturing during Preston New Road PNR-2 Operations

      1 , 2 , 2 , 2 , 3 , 3
      Seismological Research Letters
      Seismological Society of America (SSA)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydraulic fracturing (HF) at Preston New Road (PNR), Lancashire, United Kingdom, in August 2019, induced a number of felt earthquakes. The largest event (ML 2.9) occurred on 26 August 2019, approximately three days after HF operations at the site had stopped. Following this, in November 2019, the United Kingdom Government announced a moratorium on HF for shale gas in England. Here we provide an analysis of the microseismic observations made during this case of HF-induced fault activation. More than 55,000 microseismic events were detected during operations using a downhole array, the vast majority measuring less than Mw 0. Event locations revealed the growth of hydraulic fractures and their interaction with several preexisting structures. The spatiotemporal distribution of events suggests that a hydraulic pathway was created between the injection points and a nearby northwest–southeast-striking fault, on which the largest events occurred. The aftershocks of the ML 2.9 event clearly delineate the rupture plane, with their spatial distribution forming a halo of activity around the mainshock rupture area. Across clusters of events, the magnitude distributions are distinctly bimodal, with a lower Gutenberg–Richter b-value for events above Mw 0, suggesting a break in scaling between events associated with hydraulic fracture propagation, and events associated with activation of the fault. This poses a challenge for mitigation strategies that rely on extrapolating microseismicity observed during injection to forecast future behavior. The activated fault was well oriented for failure in the regional stress field, significantly more so than the fault activated during previous operations at PNR in 2018. The differing orientations within the stress field likely explain why this PNR-2 fault produced larger events compared with the 2018 sequence, despite receiving a smaller volume of injected fluid. This indicates that fault orientation and in situ stress conditions play a key role in controlling the severity of seismicity induced by HF.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: not found
          • Article: not found

          Power-Law Distributions in Empirical Data

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence

                Bookmark

                Author and article information

                Journal
                Seismological Research Letters
                Seismological Society of America (SSA)
                0895-0695
                1938-2057
                October 28 2020
                January 01 2021
                October 28 2020
                January 01 2021
                : 92
                : 1
                : 151-169
                Affiliations
                [1 ]Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
                [2 ]School of Earth Sciences, University of Bristol, Bristol, United Kingdom
                [3 ]Cuadrilla Resources Ltd., Lancashire, United Kingdom
                Article
                10.1785/0220200187
                147d0595-1512-4349-a332-ef9528dae2d4
                © 2021
                History

                Comments

                Comment on this article