38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001–100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Alcohol metabolism.

          This article describes the pathways and factors that modulate blood alcohol levels and metabolism and describes how the body disposes of alcohol. The various factors that play a role in the distribution of alcohol in the body, influence the absorption of alcohol, and contribute to first-pass metabolism of alcohol are described. Most alcohol is oxidized in the liver, and general principles and overall mechanisms for alcohol oxidation are summarized. The kinetics of alcohol elimination in-vivo and the various genetic and environmental factors that can modify the rate of alcohol metabolism are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Label-Free Impedance Biosensors: Opportunities and Challenges.

            Impedance biosensors are a class of electrical biosensors that show promise for point-of-care and other applications due to low cost, ease of miniaturization, and label-free operation. Unlabeled DNA and protein targets can be detected by monitoring changes in surface impedance when a target molecule binds to an immobilized probe. The affinity capture step leads to challenges shared by all label-free affinity biosensors; these challenges are discussed along with others unique to impedance readout. Various possible mechanisms for impedance change upon target binding are discussed. We critically summarize accomplishments of past label-free impedance biosensors and identify areas for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrical biosensors and the label free detection of protein disease biomarkers.

              Electrical detection methodologies are likely to underpin the progressive drive towards miniaturised, sensitive and portable biomarker detection protocols. In being easily integrated within standard electronic microfabrication formats, and developing capability in microfluidics, the facile multiplexed detection of a range of proteins in a small analytical volume becomes entirely feasible with something costing just a few thousand pounds and benchtop or handheld in scale. In this review, we focus on recent important advances in label free assays of protein using a number of electrical methods, including those based on electrochemical impedance spectroscopy (EIS), amperometry/voltammetry, potentiometry, conductometry and field-effect methods. We introduce their mechanistic features and examples of application and sensitivity. The current state of the art, real world applications and challenges are outlined.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                21 March 2016
                2016
                : 6
                : 23111
                Affiliations
                [1 ]Department of Bioengineering, 800 W. Campbell Rd, University of Texas at Dallas , TX 75080
                [2 ]EnLiSense LLC, 1813 Audubon Pond way , Allen, TX 75013, USA.
                Author notes
                Article
                srep23111
                10.1038/srep23111
                4800395
                26996103
                14834750-9f68-4ffc-ad5a-3132b66cab4e
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 01 December 2015
                : 29 February 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article