42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          It is unclear to which level mean arterial blood pressure (MAP) should be increased during septic shock in order to improve outcome. In this study we investigated the association between MAP values of 70 mmHg or higher, vasopressor load, 28-day mortality and disease-related events in septic shock.

          Methods

          This is a post hoc analysis of data of the control group of a multicenter trial and includes 290 septic shock patients in whom a mean MAP ≥ 70 mmHg could be maintained during shock. Demographic and clinical data, MAP, vasopressor requirements during the shock period, disease-related events and 28-day mortality were documented. Logistic regression models adjusted for the geographic region of the study center, age, presence of chronic arterial hypertension, simplified acute physiology score (SAPS) II and the mean vasopressor load during the shock period was calculated to investigate the association between MAP or MAP quartiles ≥ 70 mmHg and mortality or the frequency and occurrence of disease-related events.

          Results

          There was no association between MAP or MAP quartiles and mortality or the occurrence of disease-related events. These associations were not influenced by age or pre-existent arterial hypertension (all P > 0.05). The mean vasopressor load was associated with mortality (relative risk (RR), 1.83; confidence interval (CI) 95%, 1.4-2.38; P < 0.001), the number of disease-related events ( P < 0.001) and the occurrence of acute circulatory failure (RR, 1.64; CI 95%, 1.28-2.11; P < 0.001), metabolic acidosis (RR, 1.79; CI 95%, 1.38-2.32; P < 0.001), renal failure (RR, 1.49; CI 95%, 1.17-1.89; P = 0.001) and thrombocytopenia (RR, 1.33; CI 95%, 1.06-1.68; P = 0.01).

          Conclusions

          MAP levels of 70 mmHg or higher do not appear to be associated with improved survival in septic shock. Elevating MAP >70 mmHg by augmenting vasopressor dosages may increase mortality. Future trials are needed to identify the lowest acceptable MAP level to ensure tissue perfusion and avoid unnecessary high catecholamine infusions.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study.

          To develop and validate a new Simplified Acute Physiology Score, the SAPS II, from a large sample of surgical and medical patients, and to provide a method to convert the score to a probability of hospital mortality. The SAPS II and the probability of hospital mortality were developed and validated using data from consecutive admissions to 137 adult medical and/or surgical intensive care units in 12 countries. The 13,152 patients were randomly divided into developmental (65%) and validation (35%) samples. Patients younger than 18 years, burn patients, coronary care patients, and cardiac surgery patients were excluded. Vital status at hospital discharge. The SAPS II includes only 17 variables: 12 physiology variables, age, type of admission (scheduled surgical, unscheduled surgical, or medical), and three underlying disease variables (acquired immunodeficiency syndrome, metastatic cancer, and hematologic malignancy). Goodness-of-fit tests indicated that the model performed well in the developmental sample and validated well in an independent sample of patients (P = .883 and P = .104 in the developmental and validation samples, respectively). The area under the receiver operating characteristic curve was 0.88 in the developmental sample and 0.86 in the validation sample. The SAPS II, based on a large international sample of patients, provides an estimate of the risk of death without having to specify a primary diagnosis. This is a starting point for future evaluation of the efficiency of intensive care units.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis.

            (1992)
            To define the terms "sepsis" and "organ failure" in a precise manner. Review of the medical literature and the use of expert testimony at a consensus conference. American College of Chest Physicians (ACCP) headquarters in Northbrook, IL. Leadership members of ACCP/Society of Critical Care Medicine (SCCM). An ACCP/SCCM Consensus Conference was held in August of 1991 with the goal of agreeing on a set of definitions that could be applied to patients with sepsis and its sequelae. New definitions were offered for some terms, while others were discarded. Broad definitions of sepsis and the systemic inflammatory response syndrome were proposed, along with detailed physiologic variables by which a patient could be categorized. Definitions for severe sepsis, septic shock, hypotension, and multiple organ dysfunction syndrome were also offered. The use of severity scoring methods were recommended when dealing with septic patients as an adjunctive tool to assess mortality. Appropriate methods and applications for the use and testing of new therapies were recommended. The use of these terms and techniques should assist clinicians and researchers who deal with sepsis and its sequelae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress.

              The term ''adrenergic'' originates from ''adrenaline'' and describes hormones or drugs whose effects are similar to those of epinephrine. Adrenergic stress is mediated by stimulation of adrenergic receptors and activation of post-receptor pathways. Critical illness is a potent stimulus of the sympathetic nervous system. It is undisputable that the adrenergic-driven ''fight-flight response'' is a physiologically meaningful reaction allowing humans to survive during evolution. However, in critical illness an overshooting stimulation of the sympathetic nervous system may well exceed in time and scope its beneficial effects. Comparable to the overwhelming immune response during sepsis, adrenergic stress in critical illness may get out of control and cause adverse effects. Several organ systems may be affected. The heart seems to be most susceptible to sympathetic overstimulation. Detrimental effects include impaired diastolic function, tachycardia and tachyarrhythmia, myocardial ischemia, stunning, apoptosis and necrosis. Adverse catecholamine effects have been observed in other organs such as the lungs (pulmonary edema, elevated pulmonary arterial pressures), the coagulation (hypercoagulability, thrombus formation), gastrointestinal (hypoperfusion, inhibition of peristalsis), endocrinologic (decreased prolactin, thyroid and growth hormone secretion) and immune systems (immunomodulation, stimulation of bacterial growth), and metabolism (increase in cell energy expenditure, hyperglycemia, catabolism, lipolysis, hyperlactatemia, electrolyte changes), bone marrow (anemia), and skeletal muscles (apoptosis). Potential therapeutic options to reduce excessive adrenergic stress comprise temperature and heart rate control, adequate use of sedative/analgesic drugs, and aiming for reasonable cardiovascular targets, adequate fluid therapy, use of levosimendan, hydrocortisone or supplementary arginine vasopressin.
                Bookmark

                Author and article information

                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2009
                16 November 2009
                : 13
                : 6
                : R181
                Affiliations
                [1 ]Department of Intensive Care Medicine, Inselspital, Freiburgstrasse, 3010 Bern, Switzerland
                [2 ]Department of Intensive Care, Kuopio University Hospital and Kuopio University, 70211 Kuopio, Finland
                [3 ]Australian and New Zealand Intensive Care Research Centre, Department of EPM, Monash University, 89 Commercial Road, Melbourne 3004, Victoria, Australia
                [4 ]Department of Medical Statistics, Informatics and Health Economics, Innsbruck Medical University, Schöpfstrasse, 6020 Innsbruck, Austria
                [5 ]Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
                Article
                cc8167
                10.1186/cc8167
                2811945
                19917106
                14840a3e-a140-47da-b87b-0f5451474f02
                Copyright ©2009 Dünser et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 July 2009
                : 18 September 2009
                : 2 October 2009
                : 16 November 2009
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article