33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression

      research-article
      1 , 2 , 3
      Nature communications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ubiquitination governs oscillation of cyclin-dependent kinase (CDK) activity through a periodic degradation of cyclins for orderly cell cycle progression; however, the mechanism that maintains the constant CDK protein levels throughout the cell cycle remains unclear. Here we show that CDK6 is modified by small ubiquitin-like modifier-1 (SUMO1) in glioblastoma, and that CDK6 sumoylation stabilizes the protein and drives the cell cycle for the cancer development and progression. CDK6 is also a substrate of ubiquitin; however, CDK6 sumoylation at Lys 216 blocks its ubiquitination at Lys 147 and inhibits the ubiquitin-mediated CDK6 degradation. Throughout the cell cycle, CDK1 phosphorylates the SUMO-specific enzyme, ubiquitin-conjugating enzyme9 (UBC9) that in turn mediates CDK6 sumoylation during mitosis; CDK6 remain sumoylated in G1 phase and drives the cell cycle through G1/S transition. Thus, SUMO1-CDK6 conjugation constitutes a mechanism of cell cycle control and inhibition of this sumoylation pathway may provide a strategy for treatment of glioblastoma.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.

          The RAD6 pathway is central to post-replicative DNA repair in eukaryotic cells; however, the machinery and its regulation remain poorly understood. Two principal elements of this pathway are the ubiquitin-conjugating enzymes RAD6 and the MMS2-UBC13 heterodimer, which are recruited to chromatin by the RING-finger proteins RAD18 and RAD5, respectively. Here we show that UBC9, a small ubiquitin-related modifier (SUMO)-conjugating enzyme, is also affiliated with this pathway and that proliferating cell nuclear antigen (PCNA) -- a DNA-polymerase sliding clamp involved in DNA synthesis and repair -- is a substrate. PCNA is mono-ubiquitinated through RAD6 and RAD18, modified by lysine-63-linked multi-ubiquitination--which additionally requires MMS2, UBC13 and RAD5--and is conjugated to SUMO by UBC9. All three modifications affect the same lysine residue of PCNA, suggesting that they label PCNA for alternative functions. We demonstrate that these modifications differentially affect resistance to DNA damage, and that damage-induced PCNA ubiquitination is elementary for DNA repair and occurs at the same conserved residue in yeast and humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquitin ligases: cell-cycle control and cancer.

            A driving force of the cell cycle is the activation of cyclin-dependent kinases (CDKs), the activities of which are controlled by the ubiquitin-mediated proteolysis of key regulators such as cyclins and CDK inhibitors. Two ubiquitin ligases, the SKP1-CUL1-F-box-protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C), are responsible for the specific ubiquitylation of many of these regulators. Deregulation of the proteolytic system might result in uncontrolled proliferation, genomic instability and cancer. Cumulative clinical evidence shows alterations in the ubiquitylation of cell-cycle regulators in the aetiology of many human malignancies. A better understanding of the ubiquitylation machinery will provide new insights into the regulatory biology of cell-cycle transitions and the development of anti-cancer drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cdk1 is sufficient to drive the mammalian cell cycle.

              Unicellular organisms such as yeasts require a single cyclin-dependent kinase, Cdk1, to drive cell division. In contrast, mammalian cells are thought to require the sequential activation of at least four different cyclin-dependent kinases, Cdk2, Cdk3, Cdk4 and Cdk6, to drive cells through interphase, as well as Cdk1 to proceed through mitosis. This model has been challenged by recent genetic evidence that mice survive in the absence of individual interphase Cdks. Moreover, most mouse cell types proliferate in the absence of two or even three interphase Cdks. Similar results have been obtained on ablation of some of the activating subunits of Cdks, such as the D-type and E-type cyclins. Here we show that mouse embryos lacking all interphase Cdks (Cdk2, Cdk3, Cdk4 and Cdk6) undergo organogenesis and develop to midgestation. In these embryos, Cdk1 binds to all cyclins, resulting in the phosphorylation of the retinoblastoma protein pRb and the expression of genes that are regulated by E2F transcription factors. Mouse embryonic fibroblasts derived from these embryos proliferate in vitro, albeit with an extended cell cycle due to inefficient inactivation of Rb proteins. However, they become immortal on continuous passage. We also report that embryos fail to develop to the morula and blastocyst stages in the absence of Cdk1. These results indicate that Cdk1 is the only essential cell cycle Cdk. Moreover, they show that in the absence of interphase Cdks, Cdk1 can execute all the events that are required to drive cell division.
                Bookmark

                Author and article information

                Journal
                101528555
                37539
                Nat Commun
                Nat Commun
                Nature communications
                2041-1723
                7 June 2014
                23 June 2014
                2014
                23 December 2014
                : 5
                : 4234
                Affiliations
                [1 ]Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
                [2 ]Department of Neurosurgery, Emory University School of Medicine, 1365B Clifton Road, Atlanta, Georgia 30322, USA
                [3 ]Department of Pathology, Montreal Neurological Institute & Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
                Author notes
                Correspondence and requests for materials should be addressed to A.C.B. ( anita.bellail@ 123456mcgill.ca ) or to C.H. ( chunhai.hao@ 123456mail.mcgill.ca )
                Article
                NIHMS599768
                10.1038/ncomms5234
                4090607
                24953629
                148ff072-6362-4511-a1a5-ea7c33b961c6
                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article