9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The inhibitory roles of Ihh downregulation on chondrocyte growth and differentiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The proliferative rate of chondrocytes affects bone elongation. Chondrocyte hypertrophy is required for endochondral bone formation as chondrocytes secrete factors required for osteoblast differentiation and maturation. Previous studies have demonstrated that the Indian hedgehog (Ihh) signaling pathway is a key regulator of skeletal development and homeostasis. The aim of the present study was to investigate the function of Ihh in chondrocyte proliferation and differentiation, as well as the underlying mechanisms. Ihh was knocked down in mouse chondrocyte cells using short hairpin RNA. Chondrocyte apoptosis and cell cycle arrest were assessed using flow cytometry and the results indicated that knockdown of Ihh significantly inhibited cell growth (P<0.05) and increased apoptosis (P<0.001) compared with negative control cells. Downregulation of Ihh also resulted in cell cycle arrest at G1 to S phase in chondrocytes. It was also observed that knockdown of Ihh decreased alkaline phosphatase activity and mineral deposition of chondrocytes. The inhibitory roles of Ihh downregulation on chondrocyte growth and differentiation may be associated with the transforming growth factor-β/mothers against decapentaplegic and osteoprotegerin/receptor activator of nuclear factor κB ligand signaling pathway. The results of the present study suggest that chondrocyte-derived Ihh is essential for maintaining bone growth plates and that manipulation of Ihh expression or its signaling components may be a novel therapeutic technique for the treatment of skeletal diseases, including achondroplasia.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          PTHrP and skeletal development.

          Parathyroid hormone-related protein (PTHrP) participates in the regulation of endochondral bone development. After the cartilage mold is established in fetal life, perichondrial cells and chondrocytes at the ends of the mold synthesize PTHrP. This ligand then acts on PTH/PTHrP receptors on chondrocytes. As chondrocytes go through a program of proliferation and then further differentiation into post-mitotic, hypertrophic chondrocytes, PTHrP action keeps chondrocytes proliferating and delays their further differentiation. Indian hedgehog (Ihh) is synthesized by chondrocytes that have just stopped proliferating and is required for synthesis of PTHrP. The feedback loop between PTHrP and Ihh serves to regulate the pace of chondrocyte differentiation and the sites at which perichondrial cells first differentiate into osteoblasts. Activation of the PTH/PTHrP receptor leads to stimulation of both Gs and Gq family heterotrimeric G proteins. Genetic analyses demonstrate that Gs activation mediates the action of PTHrP to keep chondrocytes proliferating, while Gq activation opposes this action. Downstream from Gs activation, synthesis of the cyclin-cdk inhibitor, p57, is suppressed, thereby increasing the pool of proliferating chondrocytes. PTHrP's actions to delay chondrocyte differentiation are mediated by the phosphorylation of the transcription factor, SOX9, and by suppression of synthesis of mRNA encoding the transcription factor, Runx2. These pathways and undoubtedly others cooperate to regulate the pace of differentiation of growth plate chondrocytes in response to PTHrP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation.

            During endochondral ossification, two secreted signals, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP), have been shown to form a negative feedback loop regulating the onset of hypertrophic differentiation of chondrocytes. Bone morphogenetic proteins (BMPs), another family of secreted factors regulating bone formation, have been implicated as potential interactors of the Ihh/PTHrP feedback loop. To analyze the relationship between the two signaling pathways, we used an organ culture system for limb explants of mouse and chick embryos. We manipulated chondrocyte differentiation by supplementing these cultures either with BMP2, PTHrP and Sonic hedgehog as activators or with Noggin and cyclopamine as inhibitors of the BMP and Ihh/PTHrP signaling systems. Overexpression of Ihh in the cartilage elements of transgenic mice results in an upregulation of PTHrP expression and a delayed onset of hypertrophic differentiation. Noggin treatment of limbs from these mice did not antagonize the effects of Ihh overexpression. Conversely, the promotion of chondrocyte maturation induced by cyclopamine, which blocks Ihh signaling, could not be rescued with BMP2. Thus BMP signaling does not act as a secondary signal of Ihh to induce PTHrP expression or to delay the onset of hypertrophic differentiation. Similar results were obtained using cultures of chick limbs. We further investigated the role of BMP signaling in regulating proliferation and hypertrophic differentiation of chondrocytes and identified three functions of BMP signaling in this process. First we found that maintaining a normal proliferation rate requires BMP and Ihh signaling acting in parallel. We further identified a role for BMP signaling in modulating the expression of IHH: Finally, the application of Noggin to mouse limb explants resulted in advanced differentiation of terminally hypertrophic cells, implicating BMP signaling in delaying the process of hypertrophic differentiation itself. This role of BMP signaling is independent of the Ihh/PTHrP pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteogenic Differentiation of Periosteal Cells During Fracture Healing.

              Five to ten percent of fractures fail to heal normally leading to additional surgery, morbidity, and altered quality of life. Fracture healing involves the coordinated action of stem cells primarily coming from the periosteum which differentiate into the chondrocytes and osteoblasts, forming first the soft (cartilage) callus followed by the hard (bone) callus. These stem cells are accompanied by a vascular invasion that appears critical for the differentiation process and which may enable the entry of osteoclasts necessary for the remodeling of the callus into mature bone. However, more research is needed to clarify the signaling events that activate the osteochondroprogenitor cells of periosteum and stimulate their differentiation into chondrocytes and osteoblasts. Ultimately a thorough understanding of the mechanisms for differential regulation of these osteochondroprogenitors will aid in the treatment of bone healing and the prevention of delayed union and nonunion of fractures. In this review, evidence supporting the concept that the periosteal cells are the major cell sources of skeletal progenitors for the fracture callus will be discussed. The osteogenic differentiation of periosteal cells manipulated by Wnt/β-catenin, TGF/BMP, Ihh/PTHrP, and IGF-1/PI3K-Akt signaling in fracture repair will be examined. The effect of physical (hypoxia and hyperoxia) and chemical factors (reactive oxygen species) as well as the potential coordinated regulatory mechanisms in the periosteal progenitor cells promoting osteogenic differentiation will also be discussed. Understanding the regulation of periosteal osteochondroprogenitors during fracture healing could provide insight into possible therapeutic targets and thereby help to enhance future fracture healing and bone tissue engineering approaches. J. Cell. Physiol. 232: 913-921, 2017. © 2016 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                January 2018
                07 November 2017
                07 November 2017
                : 15
                : 1
                : 789-794
                Affiliations
                [1 ]Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
                [2 ]Department of Nutrition and Food Hygiene, School of Public Health, Central South University, Changsha, Hunan 410078, P.R. China
                Author notes
                Correspondence to: Dr Shaohua Liu, Department of Spine Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan 410008, P.R. China, E-mail: liushaohua_1@ 123456163.com
                Article
                ETM-0-0-5458
                10.3892/etm.2017.5458
                5772930
                29434683
                1496abda-0133-4c55-965f-4004d04aff50
                Copyright: © Deng et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 24 February 2017
                : 03 November 2017
                Categories
                Articles

                Medicine
                indian hedgehog,chondrocyte,differentiation,cell cycle,apoptosis,endochondral bone formation
                Medicine
                indian hedgehog, chondrocyte, differentiation, cell cycle, apoptosis, endochondral bone formation

                Comments

                Comment on this article