35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional brain imaging using near-infrared spectroscopy during actual driving on an expressway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prefrontal cortex is considered to have a significant effect on driving behavior, but little is known about prefrontal cortex function in actual road driving. Driving simulation experiments are not the same, because the subject is in a stationary state, and the results may be different. Functional near-infrared spectroscopy (fNIRS) is advantageous in that it can measure cerebral hemodynamic responses in a person driving an actual vehicle. We mounted fNIRS equipment in a vehicle to evaluate brain functions related to various actual driving operations while the subjects drove on a section of an expressway that was not yet open to the public. Measurements were recorded while parked, and during acceleration, constant velocity driving (CVD), deceleration, and U-turns, in the daytime and at night. Changes in cerebral oxygen exchange (ΔCOE) and cerebral blood volume were calculated and imaged for each part of the task. Responses from the prefrontal cortex and the parietal cortex were highly reproducible in the daytime and nighttime experiments. Significant increases in ΔCOE were observed in the frontal eye field (FEF), which has not been mentioned much in previous simulation experiments. In particular, significant activation was detected during acceleration in the right FEF, and during deceleration in the left FEF. Weaker responses during CVD suggest that FEF function was increased during changes in vehicle speed. As the FEF contributes to control of eye movement in three-dimensional space, FEF activation may be important in actual road driving. fNIRS is a powerful technique for investigating brain activation outdoors, and it proved to be sufficiently robust for use in an actual highway driving experiment in the field of intelligent transport systems (ITS).

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Specific impairments of planning.

          T Shallice (1982)
          An information-processing model is outlined that predicts that performance on non-routine tasks can be impaired independently of performance on routine tasks. The model is related to views on frontal lobe functions, particularly those of Luria. Two methods of obtaining more rigorous tests of the model are discussed. One makes use of ideas from artificial intelligence to derive a task heavily loaded on planning abilities. A group of patients with left anterior lesions has a specific deficit on the task. Subsidiary investigations support the inference that this is a planning impairment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Eye movement control by the cerebral cortex.

            This review focuses on eye movement control by the cerebral cortex, mainly in humans. Data have emerged based on the important contribution of recent techniques such as transcranial magnetic stimulation and functional magnetic resonance imaging, which provide complementary results to those of the classical lesion and electrical stimulation studies. The location of the human frontal eye field and its role in pursuit eye movement control were recently detailed. Cumulative evidence for the role of the dorsolateral prefrontal cortex in unwanted reflexive saccade inhibition, short-term spatial memory and prediction suggests that this area controls decisional processes governing ocular motor behaviour. The organization of spatial memory in the dorsolateral prefrontal cortex (short-term), the parahippocampal cortex (medium-term) and the hippocampal formation (long-term) is also reviewed with the results of recent transcranial magnetic stimulation studies. The relatively complicated anatomy of the posterior parietal cortex in humans is briefly described followed by some additional results concerning the location of the parietal eye field - within the posterior half of the intraparietal sulcus - and its role in visuo-spatial integration and attention. The other areas involved in spatial attention are also examined in the light of several recent contributing reports. Lastly, there are also new functional magnetic resonance imaging findings concerning the posterior cingulate cortex, which appears to be mainly involved in the control of externally guided eye movements and attentional mechanisms. Many new findings on the organization of saccades and pursuit eye movements at the cortical level have recently been reported. Furthermore, eye movements are increasingly used as a tool to elucidate relatively complex neuropsychological processes such as attention, spatial memory, motivation and decisional processes, and a considerable number of reports dealing with these questions have been observed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task.

              Brain activity during a verbal fluency task (VFT) has been the target of many functional imaging studies. Most studies using near-infrared spectroscopy (NIRS) have reported major activation in the frontal pole, but those using PET or fMRI have not. This led us to hypothesize that changes in the NIRS signals measured in the forehead during VFT were due to changes in skin blood flow. To test this hypothesis, we measured NIRS signals and the Doppler tissue blood flow signals in the foreheads of 50 participants. The measurements were performed while each participant produced words during two 60-s periods with an interval of 100 s. In addition to a conventional optode separation distance of 30 mm (FAR channels), we used a short distance--5mm (NEAR channels)--to measure NIRS signals that originated exclusively from surface tissues. The oxygenated hemoglobin (oxyHb) concentration in the FAR and NEAR channels, as well as the Doppler blood flow signal, increased in a similar manner during the two periods of word production; the signal increase in the first period was twice as high as that in the second period. Accordingly, the mean changes in oxyHb concentration in the FAR channels were correlated closely with the changes in the NEAR channels (R(2) = 0.91) and with the integrated Doppler skin blood flow signal (R(2) = 0.94). Furthermore, task-related NIRS responses disappeared when we blocked skin blood flows by pressing a small area that covered a pair of optodes. Additionally, changes in the FAR channel signals were correlated closely with the magnitude of pulsatile waves in the Doppler signal (R(2) = 0.92), but these signals were not highly correlated with the pulse rate (R(2) = 0.43). These results suggest that a major part of the task-related changes in the oxyHb concentration in the forehead is due to task-related changes in the skin blood flow, which is under different autonomic control than heart rate. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                24 December 2013
                2013
                : 7
                : 882
                Affiliations
                [1] 1Department of Brain Environmental Research, KatoBrain Co. Ltd. Tokyo, Japan
                [2] 2Department of Environment/Engineering, Tokyo Branch, Central Nippon Expressway Co. Ltd. Tokyo, Japan
                [3] 3Department of Environment/Engineering, Central Nippon Expressway Co. Ltd. Nagoya, Japan
                Author notes

                Edited by: Nobuo Masataka, Kyoto University, Japan

                Reviewed by: Yukiori Goto, Kyoto University, Japan; Anqi Zhang, Johns Hopkins University, USA

                *Correspondence: Toshinori Kato, Department of Brain Environmental Research, KatoBrain Co., Ltd., 13-15-104, Shirokanedai 3, Minato-ku, Tokyo 108-0071, Japan e-mail: kato@ 123456katobrain.com

                This article was submitted to the journal Frontiers in Human Neuroscience.

                Article
                10.3389/fnhum.2013.00882
                3871711
                24399949
                14a10017-9639-4136-8318-d150e7aeeb0e
                Copyright © 2013 Yoshino, Oka, Yamamoto, Takahashi and Kato.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 September 2013
                : 03 December 2013
                Page count
                Figures: 8, Tables: 5, Equations: 4, References: 33, Pages: 16, Words: 8902
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                driving,frontal eye field,deceleration,constant velocity driving,u-turn,fnirs,outdoor brain activation,acceleration

                Comments

                Comment on this article