6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quaternary ammonium compounds (QACs) are active ingredients in over 200 disinfectants currently recommended by the U.S. EPA for use to inactivate the SARS-CoV-2 (COVID-19) virus. The amounts of these compounds used in household, workplace, and industry settings has very likely increased, and usage will continue to be elevated given the scope of the pandemic. QACs have been previously detected in wastewater, surface waters, and sediments, and effects on antibiotic resistance have been explored. Thus, it is important to assess potential environmental and engineering impacts of elevated QAC usage, which may include disruption of wastewater treatment unit operations, proliferation of antibiotic resistance, formation of nitrosamine disinfection byproducts, and impacts on biota in surface waters. The threat caused by COVID-19 is clear, and a reasonable response is elevated use of QACs to mitigate spread of infection. Exploration of potential effects, environmental fate, and technologies to minimize environmental releases of QACs, however, is warranted.

          Related collections

          Most cited references 115

          • Record: found
          • Abstract: found
          • Article: not found

          Integrons: past, present, and future.

          Integrons are versatile gene acquisition systems commonly found in bacterial genomes. They are ancient elements that are a hot spot for genomic complexity, generating phenotypic diversity and shaping adaptive responses. In recent times, they have had a major role in the acquisition, expression, and dissemination of antibiotic resistance genes. Assessing the ongoing threats posed by integrons requires an understanding of their origins and evolutionary history. This review examines the functions and activities of integrons before the antibiotic era. It shows how antibiotic use selected particular integrons from among the environmental pool of these elements, such that integrons carrying resistance genes are now present in the majority of Gram-negative pathogens. Finally, it examines the potential consequences of widespread pollution with the novel integrons that have been assembled via the agency of human antibiotic use and speculates on the potential uses of integrons as platforms for biotechnology. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quaternary ammonium biocides: efficacy in application.

             Charles Gerba (2015)
            Quaternary ammonium compounds (QACs) are among the most commonly used disinfectants. There has been concern that their widespread use will lead to the development of resistant organisms, and it has been suggested that limits should be place on their use. While increases in tolerance to QACs have been observed, there is no clear evidence to support the development of resistance to QACs. Since efflux pumps are believe to account for at least some of the increased tolerance found in bacteria, there has been concern that this will enhance the resistance of bacteria to certain antibiotics. QACs are membrane-active agents interacting with the cytoplasmic membrane of bacteria and lipids of viruses. The wide variety of chemical structures possible has seen an evolution in their effectiveness and expansion of applications over the last century, including non-lipid-containing viruses (i.e., noroviruses). Selection of formulations and methods of application have been shown to affect the efficacy of QACs. While numerous laboratory studies on the efficacy of QACs are available, relatively few studies have been conducted to assess their efficacy in practice. Better standardized tests for assessing and defining the differences between increases in tolerance versus resistance are needed. The ecological dynamics of microbial communities where QACs are a main line of defense against exposure to pathogens need to be better understood in terms of sublethal doses and antibiotic resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance.

              Quaternary ammonium compounds (QACs) have represented one of the most visible and effective classes of disinfectants for nearly a century. With simple preparation, wide structural variety, and versatile incorporation into consumer products, there have been manifold developments and applications of these structures. Generally operating via disruption of one of the most fundamental structures in bacteria-the cell membrane-leading to cell lysis and bacterial death, the QACs were once thought to be impervious to resistance. Developments over the past decades, however, have shown this to be far from the truth. It is now known that a large family of bacterial genes (generally termed qac genes) encode efflux pumps capable of expelling many QAC structures from bacterial cells, leading to a decrease in susceptibility to QACs; methods of regulation of qac transcription are also understood. Importantly, qac genes can be horizontally transferred via plasmids to other bacteria and are often transmitted alongside other antibiotic-resistant genes; this dual threat represents a significant danger to human health. In this review, both QAC development and QAC resistance are documented, and possible strategies for addressing and overcoming QAC-resistant bacteria are discussed.
                Bookmark

                Author and article information

                Journal
                Environ Sci Technol Lett
                Environ Sci Technol Lett
                ez
                estlcu
                Environmental Science & Technology Letters
                American Chemical Society
                2328-8930
                26 June 2020
                Affiliations
                []Department of Civil, Environmental, and Geo- Engineering, University of Minnesota − Twin Cities , 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
                []Department of Environmental Sciences, University of Basel , Bernoullistrasse 30, 4056 Basel, Switzerland
                [§ ]Department of Civil, Construction, and Environmental Engineering, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53233, United States
                Author notes
                [* ]Phone: 612-625-8582. Fax: 612-626-7750. Email: arnol032@ 123456umn.edu .
                Article
                10.1021/acs.estlett.0c00437
                7341688
                Copyright © 2020 American Chemical Society

                This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                Categories
                Review
                Custom metadata
                ez0c00437
                ez0c00437

                Comments

                Comment on this article