26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exhaustive exercise and vitamins C and E modulate thyroid hormone levels at low and high altitudes

      research-article

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thyroid hormones play an important role in cell growth and differentiation and regulation of oxygen consumption and thermogenesis. The effect of altitude and vitamin supplementation on thyroid hormone levels in animals or humans performing acute exhaustive exercise have not been investigated before . Therefore, we thought to test whether exhaustive exercise-induced stress with antioxidant supplementation was capable of modulating the level of thyroid hormones at different altitudes. Serum levels of T4 (Thyroxin), T3 (Triiodothyronine), and TSH (Thyroid Stimulating Hormone) were measured in rats (N=36) born and bred in low altitude (600 m above sea level) and high altitude (2200 m above sea level) following forced swimming with or without vitamins C and E (25 mg/kg) pre-treatments. Thyroid levels were significantly decreased in resting rats at high altitude compared to low altitude, and swimming exercise moderately increased T3 and TSH at both high and low altitudes, whereas T4 was markedly increased (62 %) at low altitude compared to a moderate high altitude increase (28 %). Co-administration of vitamins C and E augmented the observed forced swimming-induced thyroid release. However, the conversion of T4 to T3 was reduced in both altitude areas following swimming exercise and vitamin pre-treatment had no effect. We conclude that acute stress induced thyroidal hormones in rats, which was augmented by antioxidant drugs in both high and low altitude areas. These findings may play an important role in the human pathophysiology of thyroid gland at different altitudes.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological and molecular basis of thyroid hormone action.

          P M Yen (2001)
          Thyroid hormones (THs) play critical roles in the differentiation, growth, metabolism, and physiological function of virtually all tissues. TH binds to receptors that are ligand-regulatable transcription factors belonging to the nuclear hormone receptor superfamily. Tremendous progress has been made recently in our understanding of the molecular mechanisms that underlie TH action. In this review, we present the major advances in our knowledge of the molecular mechanisms of TH action and their implications for TH action in specific tissues, resistance to thyroid hormone syndrome, and genetically engineered mouse models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroendocrine aspects of the response to stress.

            Disruptions in homeostasis (ie, stress) place demands on the body that are met by the activation of 2 systems, the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). Stressor-induced activation of the HPA axis and the SNS results in a series of neural and endocrine adaptations known as the "stress response" or "stress cascade." The stress cascade is responsible for allowing the body to make the necessary physiological and metabolic changes required to cope with the demands of a homeostatic challenge. Here we discuss the key elements of the HPA axis and the neuroendocrine response to stress. A challenge to homeostasis (a stressor) initiates the release of corticotropin-releasing hormone (CRH) from the hypothalamus, which in turn results in release of adrenocortiotropin hormone (ACTH) into general circulation. ACTH then acts on the adrenal cortex resulting in release of a species-specific glucocorticoid into blood. Glucocorticoids act in a negative feedback fashion to terminate the release of CRH. The body strives to maintain glucocorticoid levels within certain boundaries and interference at any level of the axis will influence the other components via feedback loops. Over- or underproduction of cortisol can result in the devastating diseases of Cushing's and Addison's, respectively, but less severe dysregulation of the HPA axis can still have adverse health consequences. These include the deposition of visceral fat as well as cardiovascular disease (eg, atherosclerosis). Thus, chronic stress with its physical and psychological ramifications remains a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. To date, treatments have been based on the existing knowledge concerning the brain areas and neurobiological substrates that subserve the stress response. Thus, the CRH blocker, antalarmin, is being investigated as a treatment for chronic stress because it prevents CRH from having its ultimate effect-a protracted release of glucocorticoids. New therapeutic strategies will depend on the discovery of novel therapeutic targets at the cellular and intracellular level. Advances in molecular biology provide the tools and new opportunities for identifying these therapeutic targets. Copyright 2002, Elsevier Science (USA). All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise intensity and its effects on thyroid hormones.

              Physical activity influences energy metabolism in human subjects by increasing activity-induced energy expenditure and resting metabolic rate for several hours after exercise. Effects of exercise on circulating thyroid hormone values remain controversial. We have investigated the effect of acute aerobic exercise on thyroid hormone values.
                Bookmark

                Author and article information

                Journal
                EXCLI J
                EXCLI J
                EXCLI J
                EXCLI Journal
                Leibniz Research Centre for Working Environment and Human Factors
                1611-2156
                20 August 2012
                2012
                : 11
                : 487-494
                Affiliations
                [1 ]Department of Physiology College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
                [2 ]Division of Physiology, College of Medicine, King Fahid Medical City, Riyadh, Saudi Arabia
                Author notes
                *To whom correspondence should be addressed: Fahaid Al-Hashem, Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudia Arabia; Tel: 966-7-2417879, E-mail: Fahaid999@ 123456yahoo.com
                Article
                2012-255 Doc487
                4983714
                27540343
                14bfdbf2-c028-4532-8b68-bd62b5c61dc8
                Copyright © 2012 Al-Hashem et al.

                This is an Open Access article distributed under the following Assignment of Rights http://www.excli.de/documents/assignment_of_rights.pdf. You are free to copy, distribute and transmit the work, provided the original author and source are credited.

                History
                : 06 July 2012
                : 25 July 2012
                Categories
                Original Article

                exhaustive exercise,vitamins,altitude,thyroid hormones
                exhaustive exercise, vitamins, altitude, thyroid hormones

                Comments

                Comment on this article