4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ellagic acid in suppressing in vivo and in vitro oxidative stresses

      Molecular and Cellular Biochemistry
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          The role of antioxidants in the chemistry of oxidative stress: A review.

          This Review Article is focused on the action of the reactive oxygenated species in inducing oxidative injury of the lipid membrane components, as well as on the ability of antioxidants (of different structures and sources, and following different mechanisms of action) in fighting against oxidative stress. Oxidative stress is defined as an excessive production of reactive oxygenated species that cannot be counteracted by the action of antioxidants, but also as a perturbation of cell redox balance. Reactive oxygenated/nitrogenated species are represented by superoxide anion radical, hydroxyl, alkoxyl and lipid peroxyl radicals, nitric oxide and peroxynitrite. Oxidative stress determines structure modifications and function modulation in nucleic acids, lipids and proteins. Oxidative degradation of lipids yields malondialdehyde and 4-hydroxynonenal, but also isoprostanes, from unsaturated fatty acids. Protein damage may occur with thiol oxidation, carbonylation, side-chain oxidation, fragmentation, unfolding and misfolding, resulting activity loss. 8-hydroxydeoxyguanosine is an index of DNA damage. The involvement of the reactive oxygenated/nitrogenated species in disease occurrence is described. The unbalance between the oxidant species and the antioxidant defense system may trigger specific factors responsible for oxidative damage in the cell: over-expression of oncogene genes, generation of mutagen compounds, promotion of atherogenic activity, senile plaque occurrence or inflammation. This leads to cancer, neurodegeneration, cardiovascular diseases, diabetes, kidney diseases. The concept of antioxidant is defined, along with a discussion of the existent classification criteria: enzymatic and non-enzymatic, preventative or repair-systems, endogenous and exogenous, primary and secondary, hydrosoluble and liposoluble, natural or synthetic. Primary antioxidants are mainly chain breakers, able to scavenge radical species by hydrogen donation. Secondary antioxidants are singlet oxygen quenchers, peroxide decomposers, metal chelators, oxidative enzyme inhibitors or UV radiation absorbers. The specific mechanism of action of the most important representatives of each antioxidant class (endogenous and exogenous) in preventing or inhibiting particular factors leading to oxidative injury in the cell, is then reviewed. Mutual influences, including synergistic effects are presented and discussed. Prooxidative influences likely to occur, as for instance in the presence of transition metal ions, are also reminded.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum

              Background Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells. Methods The compounds ellagic acid, gallic acid and punicalagin A&B were isolated from EtOAc by high performance liquid chromatography (HPLC) and further identified by mass spectrometry (MS). The inhibitory effect of ellagic acid, gallic acid and punicalagin A&B were evaluated on the production of LPS-induced NO by Griess reagent, PGE-2 and IL-6 by immunoassay kit and prostaglandin E2 competitive ELISA kit, and COX-2 by Western blotting. Results Ellagic acid, gallic acid and punicalagin A&B potentially inhibited LPS-induced NO, PGE-2 and IL-6 production. Conclusion The results indicate that ellagic acid, gallic acid and punicalagin may be the compounds responsible for the anti-inflammatory potential of P. granatum.
                Bookmark

                Author and article information

                Journal
                Molecular and Cellular Biochemistry
                Mol Cell Biochem
                Springer Nature
                0300-8177
                1573-4919
                November 2018
                January 31 2018
                November 2018
                : 448
                : 1-2
                : 27-41
                Article
                10.1007/s11010-018-3310-3
                29388153
                14ca8b19-ce33-4206-a61c-5cd9bfaeb23f
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article