5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preoptic activation and connectivity during thermal sweating in humans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Animal studies have identified the preoptic area as the key thermoregulatory region of the brain but no comparable information exists in humans. We used fMRI to study the preoptic area of human volunteers. Subjects lay in a 3T MRI scanner and were subjected to whole body heating by a water-perfused suit, to a level that resulted in a low rate of discrete sweating events (measured by finger skin resistance). Control scans were taken under thermoneutral conditions in another group. A discrete cluster of voxels in the preoptic area showed activity that was significantly correlated with thermal sweating events. We then used this cluster as a seed to investigate whether other brain areas had activity correlated with its signal, and whether that correlation depended on thermal state. Several brain regions including the dorsal cingulate cortex, anterior insula and midbrain showed ongoing activity that was correlated with that of the preoptic seed more strongly during heating than during thermoneutrality. These data provide the first imaging evidence for a thermoregulatory role of the human preoptic area. They further suggest that during thermal stress, the preoptic area communicates to several other brain regions with known relevance to the control of autonomic effectors.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space.

          In both diagnostic and research applications, the interpretation of MR images of the human brain is facilitated when different data sets can be compared by visual inspection of equivalent anatomical planes. Quantitative analysis with predefined atlas templates often requires the initial alignment of atlas and image planes. Unfortunately, the axial planes acquired during separate scanning sessions are often different in their relative position and orientation, and these slices are not coplanar with those in the atlas. We have developed a completely automatic method to register a given volumetric data set with Talairach stereotaxic coordinate system. The registration method is based on multi-scale, three-dimensional (3D) cross-correlation with an average (n > 300) MR brain image volume aligned with the Talariach stereotaxic space. Once the data set is re-sampled by the transformation recovered by the algorithm, atlas slices can be directly superimposed on the corresponding slices of the re-sampled volume. the use of such a standardized space also allows the direct comparison, voxel to voxel, of two or more data sets brought into stereotaxic space. With use of a two-tailed Student t test for paired samples, there was no significant difference in the transformation parameters recovered by the automatic algorithm when compared with two manual landmark-based methods (p > 0.1 for all parameters except y-scale, where p > 0.05). Using root-mean-square difference between normalized voxel intensities as an unbiased measure of registration, we show that when estimated and averaged over 60 volumetric MR images in standard space, this measure was 30% lower for the automatic technique than the manual method, indicating better registrations. Likewise, the automatic method showed a 57% reduction in standard deviation, implying a more stable technique. The algorithm is able to recover the transformation even when data are missing from the top or bottom of the volume. We present a fully automatic registration method to map volumetric data into stereotaxic space that yields results comparable with those of manually based techniques. The method requires no manual identification of points or contours and therefore does not suffer the drawbacks involved in user intervention such as reproducibility and interobserver variability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Significance of the insula for the evolution of human awareness of feelings from the body.

            An ascending sensory pathway that underlies feelings from the body, such as cooling or toothache, terminates in the posterior insula. Considerable evidence suggests that this activity is rerepresented and integrated first in the mid-insula and then in the anterior insula. Activation in the anterior insula correlates directly with subjective feelings from the body and, strikingly, with all emotional feelings. These findings appear to signify a posterior-to-anterior sequence of increasingly homeostatically efficient representations that integrate all salient neural activity, culminating in network nodes in the right and left anterior insulae that may be organized asymmetrically in an opponent fashion. The anterior insula has appropriate characteristics to support the proposal that it engenders a cinemascopic model of human awareness and subjectivity. This review presents the author's views regarding the principles of organization of this system and discusses a possible sequence for its evolution, as well as particular issues of historical interest. © 2011 New York Academy of Sciences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Central circuitries for body temperature regulation and fever.

              Body temperature regulation is a fundamental homeostatic function that is governed by the central nervous system in homeothermic animals, including humans. The central thermoregulatory system also functions for host defense from invading pathogens by elevating body core temperature, a response known as fever. Thermoregulation and fever involve a variety of involuntary effector responses, and this review summarizes the current understandings of the central circuitry mechanisms that underlie nonshivering thermogenesis in brown adipose tissue, shivering thermogenesis in skeletal muscles, thermoregulatory cardiac regulation, heat-loss regulation through cutaneous vasomotion, and ACTH release. To defend thermal homeostasis from environmental thermal challenges, feedforward thermosensory information on environmental temperature sensed by skin thermoreceptors ascends through the spinal cord and lateral parabrachial nucleus to the preoptic area (POA). The POA also receives feedback signals from local thermosensitive neurons, as well as pyrogenic signals of prostaglandin E(2) produced in response to infection. These afferent signals are integrated and affect the activity of GABAergic inhibitory projection neurons descending from the POA to the dorsomedial hypothalamus (DMH) or to the rostral medullary raphe region (rMR). Attenuation of the descending inhibition by cooling or pyrogenic signals leads to disinhibition of thermogenic neurons in the DMH and sympathetic and somatic premotor neurons in the rMR, which then drive spinal motor output mechanisms to elicit thermogenesis, tachycardia, and cutaneous vasoconstriction. Warming signals enhance the descending inhibition from the POA to inhibit the motor outputs, resulting in cutaneous vasodilation and inhibited thermogenesis. This central thermoregulatory mechanism also functions for metabolic regulation and stress-induced hyperthermia.
                Bookmark

                Author and article information

                Journal
                Temperature (Austin)
                Temperature (Austin)
                KTMP
                ktmp20
                Temperature: Multidisciplinary Biomedical Journal
                Taylor & Francis
                2332-8940
                2332-8959
                Jul-Sep 2014
                1 July 2014
                1 July 2014
                : 1
                : 2 , Special Issue 2 of 2: Thermal Physiology in a Changing Thermal World. Guest Editor: Michal Horowitz, PhD. Guest Associate Editors: Glen Kenny, PhD; Robin M McAllen, PhD; and Wouter D van Marken Lichtenbelt, PhD
                : 135-141
                Affiliations
                The Florey Institute of Neuroscience and Mental Health; University Of Melbourne; Parkville, VIC Australia
                Author notes
                [* ]Correspondence to: Michael J Farrell, Email: michael.farrell@ 123456florey.edu.au
                Article
                10929667
                10.4161/temp.29667
                4977170
                27583295
                14dfc1c1-66ea-437b-903d-b20b47d3f683
                Copyright © 2014 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 31 May 2014
                : 19 June 2014
                : 19 June 2014
                Page count
                Pages: 7
                Categories
                Research Paper

                brain,fmri,functional connectivity,preoptic area,sweating
                brain, fmri, functional connectivity, preoptic area, sweating

                Comments

                Comment on this article